g-C3N4/RGO的制备、光催化降解性能及其降解机理
Preparation, photocatalytic degradation performance and degradation mechanism of g-C3N4/RGO
-
摘要: 尿素固相反应得到石墨相氮化碳(g-C3N4),石墨(G)被氧化制得氧化石墨(GO),GO被还原制得石墨烯(RGO),通过3种复合方法分别制得g-C3N4/RGO材料.通过对污染物亚甲基蓝、罗丹明B和甲基橙的降解,考察了g-C3N4与GO不同复合比9.7:1、9.3:1、9:1、8:1和6.7:1对光催化剂g-C3N4/RGO光催化性能的影响.同时考察了复合物对污染物的选择性降解.用X-射线衍射谱(XRD)和傅里叶变换红外光谱(FT-IR)对催化剂的结构性质进行了表征.结果表明,g-C3N4与GO混合-水合肼还原-高温固相反应法制备的g-C3N4/RGO,时间最短,产量较高,对罗丹明B的降解效果最佳,说明该方法较好.另外,当g-C3N4与GO的质量比为9.7:1时,制备的g-C3N4/RGO降解效果最佳.还有,该复合材料对亚甲基蓝的降解效果最佳,罗丹明B次之,甲基橙最差.机理研究结果表明超氧自由基在光催化过程中起主导作用,羟基自由基起次要作用.
-
关键词:
- g-C3N4/RGO复合材料 /
- 光催化 /
- 降解 /
- 复合比 /
- 选择性
Abstract: Graphite phase carbon nitride (g-C3N4) was obtained by urea solid phase reaction, graphite (G) was oxidized to prepare graphite oxide (GO), GO was reduced to obtain graphene (RGO), and g-C3N4/RGO was prepared by three composite methods. Through the degradation of methylene blue, rhodamine B and methyl orange, the effects of different composite ratios of g-C3N4 and GO, 9.7:1, 9.3:1, 9:1, 8:1 and 6.7:1, on the performance of photocatalyst g-C3N4/RGO were investigated. At the same time, the selective degradation of pollutants by the composite was investigated. The structure and properties of the catalyst was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR). The results showed that the g-C3N4/RGO prepared by the method of mixing g-C3N4 and GO-hydrazine hydrate reduction-high temperature solid-phase reaction had the shortest time, higher yield and the best degradation effect on rhodamine B, indicating that the method was better. In addition, when the mass ratio of g-C3N4 to GO was 9.7:1, the prepared g-C3N4/RGO had the best degradation effect. In addition, the composite material had the best degradation effect on methylene blue, followed by rhodamine B and methyl orange. The results of mechanism studies showed that superoxide radicals played a dominant role in the photocatalytic process, while hydroxyl radicals played a secondary role.-
Key words:
- g-C3N4/RGO composite material /
- photocatalysis /
- degradation /
- compound ratio /
- selectivity
-
-
[1] 陆一达, 刘国光, 王枫亮, 等. ZnFe2O4/TiO2复合材料的制备及其在模拟太阳光下光催化降解吲哚美辛的动力学和机理研究[J]. 环境化学, 2017, 36(12):2550-2557. LU Y D, LIU G G, WANG F L, et al. Synthesis of ZnFe2O4/TiO2 composites and its photocatalytic degradation of Indomethacin under simulated sunlight[J]. Environmental Chemistry, 2017, 36(12):2550-2557(in Chinese).
[2] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6):129-137. ZHAO Y R, MA J Z, LIU J L, et al. Research progress on visible-light responding ZnO-based nanocomposite photocatalyst[J]. Journal of Materials Engineering, 2017, 45(6):129-137(in Chinese).
[3] 习海玲, 韩世同, 左言军, 等. TiO2光催化降解乙酰甲胺磷[J]. 环境化学, 2008, (5):559-564. XI H L, HAN S T, ZUO Y J, et al. Photocatalytic degradation of o, s-dmethyl acetyl phosphoram idothioate[J].Environmental Chemistry, 2008 , (5):559-564(in Chinese).
[4] 王羿, 申倩倩, 关荣锋, 等. PVA在提高TiO2/CdSe异质结光催化活性与抗光腐蚀性能方面的应用及机理[J]. 无机化学学报, 2019, 35(7):1221-1229. WANG Y, SHEN Q Q, GUAN R F, et al. Application and mechanism of PVA in improving photocatalytic activity and photo-corrosion resistance of TiO2/CdSe heterojunction[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(7):1221-1229(in Chinese).
[5] 钟梓俊, 许若鹏, 黄浪欢, 等. RGO/g-C3N4/MoS2复合材料的制备及其光催化性能[J]. 无机化学学报, 2019, 35(1):73-81. ZHONG Z J, XU R P, HUANG L H, et al. Synthesis and visible-light photocatalytic activity of RGO/g-C3N4/MoS2 composite photocatalysts[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(1):73-81(in Chinese).
[6] 黄溢淳, 张兆春, 姜惠轶. 可见光响应型Pt/GaP纳米粉体的光催化性质[J]. 无机材料学报, 2011, 26(6):579-584. HUANG Y C, ZHANG Z C, JIANG H Y, et al. Photocatalytic properties of Pt/GaP nanoparticles under visible light irradiation[J]. Journal of Inorganic Materials, 2011, 26(6):579-584(in Chinese).
[7] 李军, 刘祥萱, 柴云, 等. MWNTs对MWNTs/Fe2O3光催化性能的影响[J]. 材料工程, 2018, 46(9):46-52. LI J, LIU X X, CHAI Y, et al. Effect of MWNTs on photocatalytic performance of MWNTs/Fe2O3[J]. Journal of Materials Engineering, 2018, 46(9):46-52(in Chinese).
[8] CHONG B, CHEN L, HAN D, et al. CdS-modified one-dimensional g-C3N4 porous nanotubes for efficient visible-light photocatalytic conversion[J]. Chinese Journal of Catalysis, 2019, 40(6):959-968. [9] 吴正颖, 刘谢, 刘劲松, 等. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8):1086-1102. WU Z Y, LIU X, LIU J S, et al. Molybdenum disulfide based composites and their photocatalytic degradation and hydrogen evolution properties[J]. Progress in Chemistry, 2019, 31(8):1086-1102(in Chinese).
[10] 桂明生, 王鹏飞, 袁东, 等. Bi2WO6/g-C3N4复合型催化剂的制备及其可见光光催化性能[J].无机化学学报, 2013, 29(10):2057-2064. GUI M S, WANG P F, YUAN D, et al. Synthesis and visible-light photocatalytic activity of Bi2WO6/g-C3N4 composite photocatalysts[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(10):2057-2064(in Chinese).
[11] 郭桂全, 何圆圆, 王承林, 等. Ag/g-C3N4复合微纳米光催化剂的合成及其降解性能[J]. 化学研究与应用, 2019, 31(6):1001-1005. GUO G Q, HE Y Y, WANG C L, et al. Synthesis and degradation performance of Ag/g-C3N4 micro-nano composite photocatalysts[J]. Chemical Research and Application, 2019, 31(6):1001-1005(in Chinese).
[12] YUAN B, WEI J X, HU T J, et. al. Simple synthesis of g-C3N4/RGO hybrid catalyst for the photocatalytic degradation of rhodamine B[J]. Chinese Journal of Catalysis, 2015, 36(7):1009-1016. [13] 黄艳, 傅敏, 贺涛. g-C3N4/BiVO4复合催化剂的制备及应用于光催化还原CO2的性能[J]. 物理化学学报, 2015, 31(6):1145-1152. HUANG Y, FU M, HE T. Synthesis of g-C3N4/BiVO4 Nanocomposite photocatalyst and its application in photocatalytic reduction of CO2[J]. Acta Phys. -Chim. Sin., 2015, 31(6):1145-1152(in Chinese).
[14] 朱洁莲, 夏晓峰, 朱珊珊, 等. Cr掺杂TiO2纳米线/还原氧化石墨烯复合物的制备及光催化活性[J]. 高等学校化学学报, 2016, 37(10):1833-1839. ZHU J L, XIA X F, ZHU S S, et al. Synthesis and photocatalytic activity of Cr doped TiO2 nanowires/reduced graphene oxide composites[J]. Chemical Journal of Chinese Universities, 2016, 37(10):1833-1839(in Chinese).
[15] 万婷, 李星星, 黄在银, 等. g-C3N4@Ag3PO4光催化降解罗丹明B过程的原位光-微热量-荧光光谱研究[J]. 高等学校化学学报, 2017, 38(12):2226-2230. WAN T, LI X X, HUANG Z Y, et al. In-situ photocatalytic process of rhodamine B over g-C3N4@Ag3PO4 nanocomposites based on photomicrocalorimeter-fluorescence spectrometry[J]. Chemical Journal of Chinese Universities, 2017, 38(12):2226-2230(in Chinese).
[16] 张田, 邹正光, 何金云, 等. Br-掺杂Bi2WO6的水热法合成及其可见光催化性能[J]. 无机化学学报, 2017, 33(6):954-962. ZHANG T, ZOU Z G, HE J Y, et al. Hydrothermal synthesis and visible-light photocatalytic performance of Br- doped Bi2WO6[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(6):954-962(in Chinese).
[17] 傅遍红, 郭淑慧, 傅敏, 等. g-C3N4/TiO2复合纳米材料的制备及其光催化性能分析[J]. 功能材料, 2014, (12):12138-12144. FU B H, GUO S H, FU M, et al. Preparation and photocatalytic property of graphitic carbon nitride (g-C3 [18] 黄立英. 可见光响应型石墨相氮化碳复合材料的制备及其降解有机污染物研究[D]. 镇江:江苏大学, 2013, 31-42. HUANG L Y. Synthesis and photocatalytic activities of graphite-like carbon nitride composites with visible light response[D]. Zhenjiang:Jiangsu University, 2013, 31 -42(in Chinese).
[19] 王鹏, 李昭, 周颖梅, 等. 碳纳米管改性g-C3N4提升可见光催化降解性能[J]. 无机化学学报, 2019, 35(2):217-224. WANG P, LI Z, ZHOU Y M, et al. Synthesis of carbon nanotubes modified g-C3N4 photocatalysts for enhanced photocatalytic degradation activity[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(2):217-224(in Chinese).
[20] 李荣荣, 姜恒, 宫红, 等. g-C3N4的制备及其对不同染料光催化降解性能研究[J]. 应用化工, 2016, 45(9):1700-1704. LI R R, JIANG H, GONG H, et al. Simple synthesis of g-C3N4 catalyst for the photocatalytic degradation of different dyes[J]. Applied Chemical Industry, 2016, 45(9):1700-1704(in Chinese).
[21] 苏海英, 王盈霏, 王枫亮, 等. g-C3N4/TiO2复合材料光催化降解布洛芬的机制[J]. 中国环境科学, 2017, 37(1):195-202. SU H Y, WANG Y F, WANG F L, et al. Preparation of g-C3N4/TiO2 composites and the mechanism research of the photocatalysis degradation of ibuprofen[J]. China Environmental Science, 2017, 37(1):195-202(in Chinese).
[22] 顾巍, 严铭, 孙林, 等. 铌酸锰-还原氧化石墨烯复合光催化剂的构建以及可见光下降解亚甲基蓝[J]. 无机化学学报, 2017, 33(3):493-500. GU W, YAN M, SUN L, et al. Fabrication of RGO-MnNb2O6 photocatalyst with enhanced visible light efficiency in photocatalytic degradation of methylene blue[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(3):493-500(in Chinese).
[23] 刘仁月, 吴榛, 白羽, 等. Ag2CO3/BiVO4复合微米片光催化剂的制备、表征及光催化机理[J]. 无机化学学报, 2017, 33(3):519-527. LIU R Y, WU Z, BAI Y, et al. Preparation, characterization and photocatalytic mechanism of Ag2CO3/BiVO4 composite microsheets[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(3):519-527(in Chinese).
-

计量
- 文章访问数: 3509
- HTML全文浏览数: 3509
- PDF下载数: 124
- 施引文献: 0