ZnO-MgO/Al2O3吸附-臭氧催化氧化处理难降解有机废水

赵洪军, 张倩, 唐一, 胡滨, 杨晓进, 胡清. ZnO-MgO/Al2O3吸附-臭氧催化氧化处理难降解有机废水[J]. 环境化学, 2021, (3): 818-827. doi: 10.7524/j.issn.0254-6108.2019100908
引用本文: 赵洪军, 张倩, 唐一, 胡滨, 杨晓进, 胡清. ZnO-MgO/Al2O3吸附-臭氧催化氧化处理难降解有机废水[J]. 环境化学, 2021, (3): 818-827. doi: 10.7524/j.issn.0254-6108.2019100908
ZHAO Hongjun, ZHANG Qian, TANG Yi, HU Bin, YANG Xiaojin, HU Qing. ZnO-MgO/Al2O3 adsorption-ozone catalytic oxidation treatment of refractory organic wastewater[J]. Environmental Chemistry, 2021, (3): 818-827. doi: 10.7524/j.issn.0254-6108.2019100908
Citation: ZHAO Hongjun, ZHANG Qian, TANG Yi, HU Bin, YANG Xiaojin, HU Qing. ZnO-MgO/Al2O3 adsorption-ozone catalytic oxidation treatment of refractory organic wastewater[J]. Environmental Chemistry, 2021, (3): 818-827. doi: 10.7524/j.issn.0254-6108.2019100908

ZnO-MgO/Al2O3吸附-臭氧催化氧化处理难降解有机废水

    通讯作者: 杨晓进, E-mail: huq@sustc.edu.cn

ZnO-MgO/Al2O3 adsorption-ozone catalytic oxidation treatment of refractory organic wastewater

    Corresponding author: YANG Xiaojin, huq@sustc.edu.cn
  • 摘要: 以活性氧化铝为载体,采用浸渍法制备催化剂,对甲基橙及草酸模拟废水进行处理.在中性条件下,臭氧催化氧化比单独臭氧氧化能提前30 min使得甲基橙溶液褪色,反应105 min时,臭氧催化氧化对TOC的去除率高达96.53%,比单独使用臭氧氧化对甲基橙TOC去除率提高了47.19%,在处理草酸废水时臭氧催化氧化对TOC去除率高达80.59%,比单独使用臭氧氧化对草酸TOC去除率提高了59.14%.在处理甲基橙及草酸的小试实验中催化剂对有机污染物的吸附作用起到了加快反应进行的作用.在对垃圾渗滤液超滤出水时,O3与COD质量比为1:1时,臭氧催化氧化对COD去除率为49.09%,比单独使用臭氧氧化提高36.37%,臭氧催化氧化对TOC的去除率是单独使用臭氧氧化的2.54倍,在处理垃圾渗滤液纳滤浓水时,臭氧催化氧化对COD去除率高达88.72%,比单独使用臭氧氧化提高37.60%,并且臭氧催化氧化对TOC的去除率是单独臭氧氧化的1.6倍.臭氧催化氧化反应过程中产生的羟基自由基对有机物更快的反应速率.
  • 加载中
  • [1] 韩永奇,韩晨曦. 我国染料行业发展趋势分析[J].化学工业,2013,31(9):15-17

    HAN Y Q, HAN C X. Analysis on the development trend of dye industry in China[J]. Chemical Industry 2013,31(9):15-17(in Chinese).

    [2] HABIBA U, SIDDIQUE T A, LEE J J L, et al. Adsorption of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane[J]. Carbohy Drate Polymers, 2018,19l:79-85.
    [3] 张轶,从燕青,孙培德.电絮凝处理甲基橙废水的实验及动力学模型[J]化工学报,2009, 60(9):2339-2345.

    ZHANG Y, CONG Y Q, SUN P D.Experimental and kinetic model of electro-flocculation treatment of methyl orange wastewater[J].Journal of Chemical Industry and Engineering,2009, 60(9):2339-2345(in Chinese).

    [4] LI P, LIU Z P, WANG X G, et al. Enhanced decolorization of methyl orange in aqueous solution using irone carbon micro-electrolysis activation of sodium persulfate[J]. Chemosphere, 2017, 180:100-107.
    [5] WU J N, WANG T W. Ozonation of aqueous azo dye in a semi-batch reactor[J]. Water Research, 2001,35(4):1093-1099.
    [6] SAULEDA R, BRILLAS E. Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and UVA light[J]. Applied Catalysis B:Environmental, 2011, 29:135-145.
    [7] ZHAO L, MA J, SUN Z Z, et al. Mechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation[J]. Enviromental Science and Technology, 2008, 42(1l):4002-4014.
    [8] YIN R L, GUO W Q, ZHOU X J, et al. Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4 nanoparticles:Catalytic performance and degradation mechanism[J]. Rsc Advances, 2016, 6(23):19265-19270.
    [9] LÜ X, ZHANG Q, YANG W, et al. Catalytic ozonation of 2,4-dichlorophenoxyacetic acid over novel Fe-Ni/AC[J]. RSC Advances, 2015, 5:10537-10545.
    [10] ASMA A, MONIA G, JAVIER R T F, et al. Nitrobenzene degradation in aqueous solution using ozone/cobalt supported activated carbon coupling process:A kinetic approach[J]. Sep Purif Technol, 2017, 184:308-318.
    [11] ZHANG J H, ZHANG Q, SHAO X Z, et al. Properties of magnetic carbon nanomaterials and application in removal organic dyes[J].Chemosphere, 2018, 207:377-384.
    [12] TANG Y M, PAN Z Q, LI L S. pH-insusceptible cobalt-manganese immobilizing mesoporous siliceous MCM-41catalyst for ozonation of dimethyl phthalate[J]. J Colloid Interface Sci, 2017,508:196202.
    [13] LI H, MA H R, ZHANG L. Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/gamma-Al2O3[J]. Chemosphere, 2013, 90:143-149.
    [14] 陈瑞芳.催化臭氧氧化在纺织染整行业废水深度处理中的应用研究[D]北京:北京化工大学,2014. CHEN R F. catalytic ozone oxidation in the advanced treatment of wastewater in textile dyeing and finishing industry[D].Beijing:Beijing University of Chemical Technology,2014(in Chinese).
    [15] TONG S P, SHI R, ZHANG H, et al. Catalytic performance of Fe3O4-CoO/Al2O3 catalyst in ozonation of 2(2,4-dichlorophenoxy) propionic acid, nitrobenzene and oxalic acid in water[J]. Environ Sci, 2010, 22(10):1623-1628.
    [16] CHEN J, TIAN S H, LIU J, et al. Catalytic performance of MgO with different exposed crystal facets Towards the ozonation of 4-chlorophenol[J].Applied Catalysis A:General, 2015,506:118-125.
    [17] BELTRAN F J, RIVAS F J, FERNANDEZ L A, et al. Kinetics of catalytic ozonation of oxalic acid in water with activated carbon[J]. Ind Eng Chem Res, 2002, 41:6510-6517.
    [18] KASPRZYK-HORDEM B. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B:Environmental, 2003,46(4):639-669.
    [19] 杨德敏,袁建梅,夏宏.羟基自由基抑制剂对臭氧氧化降解苯酚的影响[J].化工环保, 2014(1):24-27. YANG D M, YUAN J M, XIA H. Effect of hydroxyl radical inhibitor on ozone oxidative degradation of phenol[J].Chemical Environmental Protection, 2014

    (1):24-27(in Chinese).

  • 加载中
计量
  • 文章访问数:  1708
  • HTML全文浏览数:  1708
  • PDF下载数:  75
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-09

ZnO-MgO/Al2O3吸附-臭氧催化氧化处理难降解有机废水

    通讯作者: 杨晓进, E-mail: huq@sustc.edu.cn
  • 1. 北京化工大学化学工程学院, 北京, 100029;
  • 2. 南方科技大学环境科学与工程学院, 深圳, 518055

摘要: 以活性氧化铝为载体,采用浸渍法制备催化剂,对甲基橙及草酸模拟废水进行处理.在中性条件下,臭氧催化氧化比单独臭氧氧化能提前30 min使得甲基橙溶液褪色,反应105 min时,臭氧催化氧化对TOC的去除率高达96.53%,比单独使用臭氧氧化对甲基橙TOC去除率提高了47.19%,在处理草酸废水时臭氧催化氧化对TOC去除率高达80.59%,比单独使用臭氧氧化对草酸TOC去除率提高了59.14%.在处理甲基橙及草酸的小试实验中催化剂对有机污染物的吸附作用起到了加快反应进行的作用.在对垃圾渗滤液超滤出水时,O3与COD质量比为1:1时,臭氧催化氧化对COD去除率为49.09%,比单独使用臭氧氧化提高36.37%,臭氧催化氧化对TOC的去除率是单独使用臭氧氧化的2.54倍,在处理垃圾渗滤液纳滤浓水时,臭氧催化氧化对COD去除率高达88.72%,比单独使用臭氧氧化提高37.60%,并且臭氧催化氧化对TOC的去除率是单独臭氧氧化的1.6倍.臭氧催化氧化反应过程中产生的羟基自由基对有机物更快的反应速率.

English Abstract

参考文献 (19)

目录

/

返回文章
返回