红枫湖水源地附近粉煤灰堆积场重金属存在形态及静态淋溶规律
Heavy metal existence and static leaching rules in fly ash accumulation field near Hongfeng Lake water source
-
摘要: 酸雨对露天粉煤灰堆积场的淋滤作用导致周围环境产生重金属污染是一种广泛现象.为研究酸雨对贵阳市水源地红枫湖周边一大型粉煤灰堆积场的重金属迁移影响,本文以这一粉煤灰堆积场为研究对象,通过静态淋溶实验探讨了粉煤灰中Cr、Ni、Cu、Zn、As、Cd、Pb等7种重金属元素的含量、存在形态、淋溶时间、堆积时间、粒度对重金属溶出规律的影响.结果表明,粉煤灰中Ni、Cu、Zn、Pb、As和Cd等6种重金属的含量随堆积时间增加而增大,Cr含量变化与上述反之;在淋溶实验中,堆积时间的增加使Cr、Ni、Cu和Zn重金属元素的可溶态减小;在淋溶第28—48天期间,Cr、Ni和Cu元素溶出浓度降低的粒度顺序为细粒度>中粒度和粗粒度、Cd元素溶出浓度降低的粒度顺序为中粒度 > 粗粒度 > 细粒度.本研究对红枫湖水源地和周边地下水的重金属防控提供一定的参考依据.Abstract: It is a widespread phenomenon that the leaching effect of acid rain on the open-air fly ash storage site causes heavy metal pollution to the surrounding environment. To study the effect of acid rain on heavy metal migration in a fly ash accumulation field near Hongfeng Lake, by static leaching experiment, this research investigated the effects of content, fraction distribution, leaching time, stacking time, and particle size of seven heavy metal elements (Cr, Ni, Cu, Zn, As, Cd, and Pb) in fly ash on the dissolution of heavy metals. The results showed that:The contents of Ni, Cu, Zn, Pb, As, and Cd in fly ash increased with the increasing of the stacking time, while opposite case happened on Cr. In the leaching experiment, the increase of the accumulation time reduced the percentage of soluble states of Cr, Ni, Cu and Zn; Within 28-48 d of leaching, the order of the particle size of the reduction of the dissolution concentration of Cr, Ni and Cu was fine fraction > medium fraction and coarse fraction, and the order of affecting Cd was medium fraction > coarse fraction > fine fraction. This study provided a certain reference for the prevention and control of heavy metals in the water source area of Hongfeng Lake and the surrounding groundwater.
-
Key words:
- fly ash /
- heavy metal /
- occurrence form /
- leaching rule /
- Hongfeng Lake
-
[1] 高瑞, 程芳琴. 冶金工业固体废物钢渣的综合利用[J]. 再生资源与循环经济, 2010, 3(11):38-41. GAO R, CHENG F Q. The comprehensive utilization of steel slag from metallurgical industry[J]. Recycling Research, 2010, 3(11):38-41(in Chinese).
[2] 黄根, 王宾, 徐宏祥, 等. 粉煤灰综合利用与提质技术研究进展[J]. 矿产保护与利用, 2019, 39(4):32-37. HUANG G, WANG B, XU H X, et al. Research progress on comprehensive utilization and upgrading technologies of fly ash[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4):32-37(in Chinese).
[3] 中华人民共和国生态环境部. 2018年全国大、中城市固体废物污染环境防治年报[R]. 北京, 2018. Ministry of Ecology and Environment of the People's Republic of China. 2018 annual report on environmental pollution prevention and control of solid wastes in large and medium cities of China[R]. Beijing, 2018(in Chinese). [4] 王建新, 李晶, 赵仕宝, 等. 中国粉煤灰的资源化利用研究进展与前景[J]. 硅酸盐通报, 2018, 37(12):3833-3841. WANG J X, LI J, ZHAO S B, et al. Research progress and prospect of resource utilization of fly ash in China[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12):3833-3841(in Chinese).
[5] MEDINA A, GAMERO P, QUEROL X, et al. Fly ash from a Mexican mineral coal Ⅰ:Mineralogical and chemical characterization[J]. Journal of Hazardous Materials, 2010, 181(1-3):82-90. [6] 郑顺安, 陈春, 郑向群, 等. 模拟降雨条件下22种典型土壤镉的淋溶特征及影响因子分析[J]. 环境化学, 2013, 32(5):867-873. ZHENG X A, CHEN C, ZHENG X Q, et al. Leaching characteristics and affecting factors of cadmium in 22 typical soils under simulated rainfall conditions[J]. Environmental Chemistry, 2013, 32(5):867-873(in Chinese).
[7] 林海, 于明利, 董颖博, 等. 不同粒度锡采矿废石重金属淋溶规律及影响机制[J]. 中国环境科学, 2014, 34(3):664-671. LIN H, YU M L, DONG Y B, et al. The heavy mental leaching rules and influence mechanism of different particle size of tin mining waste rock[J]. China Environmental Science, 2014, 34(3):664-671(in Chinese).
[8] LIU Y Y, LIU Z Y, ZNANG Z Z, et al. Rapid evaluation of leaching potential of heavy metals from municipal solid waste incineration fly ash[J]. Journal of Environmental Management, 2019, 238:144-152. [9] 秦燕, 徐晓春, 谢巧勤, 等. 铜矿采矿废石重金属环境污染的淋溶实验研究——以安徽铜陵凤凰山矿田药园山铜矿床为例[J]. 地球学报, 2008, 29(2):247-252. QIN Y, XU X C, XIE Q Q, et al. Leaching experiments of environmental pollution caused by heavy metals of waste rocks in the copper mine:A case study of the Yaoyuanshan ore deposit in the fenghuangshan copper ore field, Tongling, Anhui, China[J]. Acta Geoscientia Sinica, 2008, 29(2):247-252(in Chinese).
[10] TIWARI M K, BAJPAI S, DEWANGAN U K, et al. Assessment of heavy metal concentrations in surface water sources in an industrial region of central India[J]. Karbala International Journal of Modern Science, 2015, 1(1):9-14. [11] KORKACH S V, VALUEVA O A, DOUBNIAKOVA V V, et al. Pyrimidine nucleosides containing 5-substituent:Synthesis and antiviral activity[J]. Antiviral Research, 2007, 74(3SI):A73. [12] LI H X, JI H B. Chemical speciation, vertical profile and human health risk assessment of heavy metals in soils from coal-mine brownfield, Beijing, China[J]. Journal of Geochemical Exploration, 2017, 183:22-32. [13] QURESHI A, MAURICE C, ÖHLANDER B. Effects of the co-disposal of lignite fly ash and coal mine waste rocks on AMD and leachate quality[J]. Environmental Science and Pollution Research, 2019, 26(4):4104-4115. [14] 金祖雪, 王敬富, 陈权, 等. 贵阳市清镇塘关灰场对红枫湖水质的影响[J]. 环境工程, 2019, 37(6):96-101. JIN Z X, WANG J F, CHEN Q, et al. Influence of Tangguan ash yard in Qingzhen town in Guiyang on the water quality of Hongfeng lake[J]. Environmental Engineering, 2019, 37(6):96-101(in Chinese).
[15] 龚勋. 典型西部粉煤灰中重金属元素淋滤特性研究[D]. 武汉:华中科技大学, 2010. GONG X. Leaehing charaeteristies of heavy metal in the coal ash from West China[D]. Wuhan:Huazhong University of Science and Technology, 2010(in Chinese). [16] 中华人民共和国生态环境部. 土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法(HJ803-2016)[S]. 北京:中国环境科学出版社, 2016. Ministry of Ecology and Environment of the People's Republic of China. Soil and sediment-Determination of aqua regia extracts of 12 metal elements-Inductively coupled plasma mass spectrometry (HJ803-2016 )[S]. Beijing:China Environmental Science Press, 2016(in Chinese).
[17] WU J, HUANG Y, BIAN X, et al. Biosensing of BCR/ABL fusion gene using an intensity-interrogation surface plasmon resonance imaging system[J]. Optics Communications, 2016, 377:24-32. [18] 朱兆洲, 李军, 王志如. 贵阳酸雨中溶解态重金属质量浓度及形态分析[J]. 环境科学, 2015, 36(6):1952-1958. ZHU Z Z, LI J, WANG Z R. Concentrations and speciation of dissolved heavy metal in rainwater in Guiyang, China[J]. Environmental Science, 2015, 36(6):1952-1958(in Chinese).
[19] 王红宇, 李金娟, 孙哲, 等. 贵州典型酸雨城市降尘中有毒重金属时空分布及来源分析[J]. 地球与环境, 2014, 42(6):750-756. WANG H Y, LI J J, SUN Z, et al. Analysis of the temporal and spatial variations and sources of toxic heavy metals in atmospheric dustfall in typical acid-rain cities, Guizhou Province[J]. Earth and Environment, 2014, 42(6):750-756(in Chinese).
[20] ZHANG H, OUYANG S. Release characteristics of heavy metals from coal gangue under simulation leaching conditions[J]. Energy Exploration & Exploitation, 2014, 32(2):413-422. [21] 张本仁, 赵伦山. 地球化学[M]. 北京:地质出版社, 1988. ZHANG B R, ZHAO L S. Geochemistry[M]. Beijing:Geological Publishing House, 1988(in Chinese). [22] FERNÁNDEZ-ONDOÑO E, BACCHETTA G, LALLENA A M, et al. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia[J]. Journal of Geochemical Exploration, 2017, 172:133-141. [23] SWAINE D J. Trace-elements in coal and their dispersal during combustion[J]. Fuel Processing Technology, 1994, 39(1-3):121-137. [24] 杨娅, 季宏兵. 新化矿区煤矸石中微量元素赋存形态及浸出特征[J]. 地球与环境, 2016, 44(1):36-46. YANG Y JI H B. A study on chemical forms and leaching characteristics of trace elements in coal gangue from Xinhua Coal Mine in Guizhou Province, China[J]. Earth and Environment, 2016, 44(1):36-46(in Chinese).
[25] 李侠. 煤矸石对环境的影响及再利用研究[D]. 西安:长安大学, 2005. LI X. Study on the impact of coal gangue on the environment and reuse[D]. Xi'an:Chang'an University, 2005(in Chinese). [26] 党志, 刘丛强, 李忠. 煤矸石中微量重金属元素化学活性的实验模拟研究[J]. 华南理工大学学报(自然科学版), 2001, 29(12):1-5. DANG Z, LIU C Q, LI Z. Experimental simulation of chemical activity of heavy metals in coal gangue[J]. Journal of South China University of Technology (Natural Science Edition), 2001, 29(12):1-5(in Chinese).
计量
- 文章访问数: 1775
- HTML全文浏览数: 1775
- PDF下载数: 94
- 施引文献: 0