生物炭对土壤中阿特拉津吸附特征的影响

孙涛, 杨再磊, 蒋靖佰伦, 孙约兵, 李俊芳, 贾宏涛. 生物炭对土壤中阿特拉津吸附特征的影响[J]. 环境化学, 2021, (3): 687-695. doi: 10.7524/j.issn.0254-6108.2019102207
引用本文: 孙涛, 杨再磊, 蒋靖佰伦, 孙约兵, 李俊芳, 贾宏涛. 生物炭对土壤中阿特拉津吸附特征的影响[J]. 环境化学, 2021, (3): 687-695. doi: 10.7524/j.issn.0254-6108.2019102207
SUN Tao, YANG Zailei, JIANG Jingbailun, SUN Yuebing, LI Junfang, JIA Hongtao. Effect of biochar on the adsorption characteristics of atrazine in soil[J]. Environmental Chemistry, 2021, (3): 687-695. doi: 10.7524/j.issn.0254-6108.2019102207
Citation: SUN Tao, YANG Zailei, JIANG Jingbailun, SUN Yuebing, LI Junfang, JIA Hongtao. Effect of biochar on the adsorption characteristics of atrazine in soil[J]. Environmental Chemistry, 2021, (3): 687-695. doi: 10.7524/j.issn.0254-6108.2019102207

生物炭对土壤中阿特拉津吸附特征的影响

    通讯作者: 孙约兵, E-mail: sunyuebing@aepi.org.cn 贾宏涛, E-mail: jht@xjau.edu.cn
  • 基金项目:

    新疆自然科学基金(2018D01B25)资助.

Effect of biochar on the adsorption characteristics of atrazine in soil

    Corresponding authors: SUN Yuebing, sunyuebing@aepi.org.cn ;  JIA Hongtao, jht@xjau.edu.cn
  • Fund Project: Supported by The National Natural Science Foundation of Xinjiang (2018D01B25).
  • 摘要: 为探究生物炭对土壤中阿特拉津的吸附特征及影响因素,采用批处理实验研究了灭菌(T1)、5%秸秆生物炭+灭菌(T2)、未灭菌(T3)和5%秸秆生物炭+未灭菌(T4)条件下对土壤中阿特拉津吸附特征及土壤理化性质的影响.结果表明,在最初0—12 h内,不同处理下阿特拉津吸附量均随时间的延长而快速增加,而在12—96 h内增加较为缓慢并逐渐趋于平衡.在96 h时,T2和T4处理下阿特拉津最大吸附量分别达到46.22 mg·kg-1和46.43 mg·kg-1,而未添加生物炭的T1和T3处理则有所降低,分别为44.20 mg·kg-1和43.09 mg·kg-1.准二级动力学模型更好地拟合不同处理下土壤对阿特拉津吸附特征,T2和T4处理下吸附速率常数K分别为0.257 kg·mg-1·h-1和0.339 kg·mg-1·h-1,显著高于未添加生物炭处理的T1和T3处理(K分别为-0.083 kg·mg-1·h-1和-0.261 kg·mg-1·h-1).内扩散模型显示添加生物炭后,土壤对阿特拉津的吸附是一个由边界扩散、内部孔隙扩散等多因素控制的复杂化学过程.添加生物炭可显著提高土壤pH、有机碳、碱解氮、速效磷和速效钾含量,其中土壤有机碳含量与阿特拉津最大吸附量之间存在显著的正相关关系(P<0.05).由此可见,添加生物炭可以提高土壤对阿特拉津的固持能力,减少其淋溶迁移风险,从而达到修复阿特拉津污染土壤的目的.
  • 加载中
  • [1] 孙涛, 朱新萍, 李典鹏, 等. 不同原料生物炭理化性质的对比分析[J]. 农业资源与环境学报, 2017, 34(6):543-549.

    SUN T, ZHU X P, LI D P, et al. Comparison of biochars characteristics from different raw materials[J]. Journal of Agricultural Resources and Environment, 2017, 34(6):543-549(in Chinese).

    [2] ZHAO L, CAO X, MAŠEK O, et al. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J]. Journal of Hazardous Materials, 2013, 256(1):1-9.
    [3] 李晓娜, 宋洋, 贾明云, 等. 生物质炭对有机污染物的吸附及机理研究进展[J]. 土壤学报, 2017, 54(6):1313-1325.

    LI X N, SONG Y, JIA M Y, et al. A review of researches on biochar adsorbing organic contaminants and its mechanism[J]. Acta Pedologica Sinica, 2017, 54(6):1313-1325(in Chinese).

    [4] LOGANATHAN V A, FENG Y C, SHENG G D, et al. Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils[J]. Soil Science Society of America Journal, 2009, 73(3):967-974.
    [5] 黄柱坚, 朱子骜, 吴学深, 等. 皇竹草生物炭的结构特征及对重金属吸附作用机制[J]. 环境化学, 2016, 35(4):766-772.

    HUANG Z J, ZHU Z A, WU X S, et al. Adsorption of heavy metals by biochar derived from Pennisetum sinese Roxb[J]. Environmental Chemistry, 2016, 35(4):766-772(in Chinese).

    [6] 应博, 林国林, 金兰淑, 等. 玉米芯生物炭对2,4-D在土壤中吸附性能的研究[J]. 环境科学学报, 2015, 35(5):1491-1497.

    YING B, LIN G L, JIN L S, et al. Effect of corn cob biochar on the adsorption of 2,4-dichlorophenoxyacetic acid in spiked soil[J]. Acta Scientiae Circumstantiae, 2015, 35(5):1491-1497(in Chinese).

    [7] 王林, 邹明, 刘晓东, 等. 土壤及生物炭对草甘膦的吸附作用[J]. 水土保持学报, 2019, 33(3):372-377.

    WANG L, ZOU M, LIU X D, et al. Adsorption of glyphosate by soil and biochar[J]. Journal of Soil and Water Conservation, 2019, 33(3):372-377(in Chinese).

    [8] 代快, 李江舟, 蒲天燕, 等. 施用生物炭对3种烟用农药残留的影响[J]. 中国农业科技导报, 2019, 21(8):99-106.

    DAI K, LI J Z, PU T Y, et al. Effects of biochar on three pesticide residues in flue-cured tobacco[J]. Journal of Agricultural Science and Technology, 2019, 21(8):99-106(in Chinese).

    [9] SOPENA F, SEMPLE K, SOHI S, et al. Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar[J]. Chemosphere, 2012, 88(1):77-83.
    [10] 吴蒨蒨. 生物炭增强土壤吸附阿特拉津的作用及机理[D]. 杭州:浙江大学:2016. WU Q Q. Enhanced sorption of atrazine to soil amended with biochar[D]. Hangzhou:Zhejiang University, 2016(in Chinese).
    [11] 李明锐, 陈建军, 湛方栋, 等. 土壤和水样中阿特拉津的微生物降解研究[J]. 环境科学与技术, 2016, 39(3):85-90.

    LI M R, CHEN J J, ZHAN F D, et al. Research on microbial degradation of atrazine in soil and water samples[J]. Environmental Science & Technology, 2016, 39(3):85-90(in Chinese).

    [12] YU X Y, MU C L, GU C, et al. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils[J]. Chemosphere, 2011, 85(8):1284-1289.
    [13] OLESZCZUK P, JOŚKO I, FUTA B, et al. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil[J]. Geoderma, 2014, 214:10-18.
    [14] 陈建军, 李明锐, 张坤, 等. 几种植物对土壤中阿特拉津的吸收富集特征及去除效率研究[J]. 农业环境科学学报, 2014, 33(12):2368-2373.

    CHEN J J, LI M R, ZHANG K, et al. Uptake and removal efficiency of atrazine in soil by several weeds[J]. Journal of Agro-Environment Science, 2014, 33(12):2368-2373(in Chinese).

    [15] 毛萌, 任理. 阿特拉津的主要降解产物在土壤中转化与运移的研究进展[J]. 中国农业科学, 2009, 42(5):1690-1697.

    MAO M, REN L. The Transformation and transport of main degradation products of atrazine in soils-A Review[J]. Scientia Agricultura Sinica, 2009, 42(5):1690-1697(in Chinese).

    [16] PRADO B, DUWING C, HIDALGO C, et al. Transport, sorption and degradation of atrazine in two clay soils from Mexico:Andosol and Vertisol[J]. Geoderma, 2014, 232(234):628-639.
    [17] DENG H, FENG D, HE J X, et al. Influence of biochar amendments to soil on the mobility of atrazine using sorption-desorption and soil thin-layer chromatography[J]. Ecological Engineering, 2017, 99:381-390.
    [18] 汤家喜, 李景阳, 何苗苗, 等. 玉米芯生物炭对河岸带土壤中乙草胺和阿特拉津的吸附性能[J]. 环境工程学报, 2018, 12(12):3440-3447.

    TANG J X, LI J Y, HE M M, et al. Adsorption performance of corn cob biochar for acetochlor and atrazine in riparian soil[J]. Chinese Journal of Environmental Engineering, 2018, 12(12):3440-3447(in Chinese).

    [19] 瞿梦洁, 李慧冬, 刘伟, 等. 水土环境介质中阿特拉津修复过程研究进展[J]. 生态毒理学报, 2017, 12(4):119-128.

    QU M J, LI H D, LIU W, et al. A review on remediation of atrazine in soil and water systems[J]. Asian Journal of Ecotoxicology, 2017, 12(4):119-128(in Chinese).

    [20] HUANG Q, SONG S, CHEN Z, et al. Biochar-based materials and their applications in removal of organic contaminants from wastewater:State-of-the-art review[J]. Biochar, 2019, 1(1):45-73.
    [21] KERMINEN K, LE MOËL R, HARJU V, et al. Influence of organic matter, nutrients, and cyclodextrin on microbial and chemical herbicide and degradate dissipation in subsurface sediment slurries[J]. Science of the Total Environment, 2018, 618:1449-1458.
    [22] 吴奇, 宋福强. 土壤中阿特拉津生物降解的研究进展[J]. 土壤与作物, 2017, 6(2):153-160.

    WU Q, SONG F Q. Research advances on biodegradation of atrazine in soil[J]. Soils and Crops, 2017, 6(2):153-160(in Chinese).

    [23] 孙航, 蒋煜峰, 石磊平, 等.不同热解及来源生物炭对西北黄土吸附敌草隆的影响[J]. 环境科学, 2016, 37(12):4857-4866.

    SUN H, JIANG Y F, SHI L P, et al. Adsorption and influential factors of diuron on the loess soil by adding different biochar prepared at varying temperatures[J]. Environmental Science, 2016, 37(12):4857-4866(in Chinese).

    [24] YANG F, SUN L, ZHANG W, et al. One-pot synthesis of porous carbon foam derived from corn straw:Atrazine adsorption equilibrium and kinetics[J]. Environmental Science:Nano, 2017, 4(3):625-635.
    [25] BáEZ M E, FUENTES E, ESPINOZA J. Characterization of the atrazine sorption process on Andisol and Ultisol volcanic ash-derived soils:Kinetic parameters and the contribution of humic fractions[J]. Journal of Agricultural and Food Chemistry, 2013, 61(26):6150-6160.
    [26] 霍丽娟, 任理, 毛萌, 等. 阿特拉津及其代谢物在砂质壤土中的吸附[J]. 中国环境科学, 2018, 38(1):254-262.

    HUO L J, REN L, MAO M, et al. Sorption of atrazine and its metabolites on a sandy loam soil[J]. China Environmental Science, 2018, 38(1):254-262(in Chinese).

    [27] 宫晓磊. 生物炭基复合材料吸附有机污染物的机制研究[D]. 天津:天津工业大学, 2017. GONG X L. Study on mechanism of adsorption of organic pollutants by biochar matrix composites[D]. Tianjin:Tianjin Polytechnic University, 2017(in Chinese).
    [28] HO Y S, MCKAY G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat[J]. Canadian Journal of Chemical Engineering, 1998, 76(4):822-827.
    [29] IOANNOU Z, SIMITZIS J. Adsorption kinetics of phenol and 3-nitrophenol from aqueous solutions on conventional and novel carbons[J]. Journal of Hazardous Materials, 2009, 171(1):954-964.
    [30] 王子莹, 邱梦怡, 杨妍, 等.不同生物炭吸附乙草胺的特征及机理[J]. 农业环境科学学报, 2016, 35(1):93-100.

    WANG Z U, QIU M Y, YANG Y, et al. Sorption of acetochlor by biochar derived from wood dust and swine manure at different pyrolytic temperatures[J]. Journal of Agro-Environment Science, 2016, 35(1):93-100(in Chinese).

    [31] LIU Y, LONAPPAN L, BRAR S K, et al. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides:A review[J]. Science of the Total Environment, 2018, 645:60-70.
    [32] 王宁, 侯艳伟, 彭静静, 等. 生物炭吸附有机污染物的研究进展[J]. 环境化学, 2012, 31(3):287-295.

    WANG N, HOU Y W, PENG J J, et al. Research progress on sorption of organic contaminants to biochar[J]. Environmental Chemistry, 2012, 31(3):287-295(in Chinese).

    [33] JIN J, KANG M, SUN K, et al. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine[J]. Science of the Total Environment, 2016, 550:504-513.
    [34] YANG F, ZHANG W, LI J, et al. The enhancement of atrazine sorption and microbial transformation in biochars amended black soils[J]. Chemosphere, 2017, 189:507-516.
    [35] FAN X, SONG F. Bioremediation of atrazine:recent advances and promises[J]. Journal of Soils and Sediments, 2014, 14(10):1727-1737.
    [36] TEUTSCHEROVA N, LOJKA B, HOUšKA J, et al. Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils[J]. European journal of soil biology, 2018, 88:15-26.
    [37] LIU S, LIU Y, TAN X, et al. The effect of several activated biochars on Cd immobilization and microbial community composition during in-situ remediation of heavy metal contaminated sediment[J]. Chemosphere, 2018, 208:655-664.
    [38] PALANSOORIYA K N, WONG J T F, HASHIMOTO Y, et al. Response of microbial communities to biochar-amended soils:A critical review[J]. Biochar, 2019, 1(1):3-22.
  • 加载中
计量
  • 文章访问数:  1975
  • HTML全文浏览数:  1975
  • PDF下载数:  52
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-22

生物炭对土壤中阿特拉津吸附特征的影响

    通讯作者: 孙约兵, E-mail: sunyuebing@aepi.org.cn ;  贾宏涛, E-mail: jht@xjau.edu.cn
  • 1. 新疆农业大学草业与环境科学学院, 乌鲁木齐, 830052;
  • 2. 农业农村部环境保护科研监测所, 农业农村部产地环境污染防控重点实验室/天津市农业环境与农产品安全重点实验室, 天津, 300191;
  • 3. 新疆农业大学化学工程学院, 乌鲁木齐, 830052
基金项目:

新疆自然科学基金(2018D01B25)资助.

摘要: 为探究生物炭对土壤中阿特拉津的吸附特征及影响因素,采用批处理实验研究了灭菌(T1)、5%秸秆生物炭+灭菌(T2)、未灭菌(T3)和5%秸秆生物炭+未灭菌(T4)条件下对土壤中阿特拉津吸附特征及土壤理化性质的影响.结果表明,在最初0—12 h内,不同处理下阿特拉津吸附量均随时间的延长而快速增加,而在12—96 h内增加较为缓慢并逐渐趋于平衡.在96 h时,T2和T4处理下阿特拉津最大吸附量分别达到46.22 mg·kg-1和46.43 mg·kg-1,而未添加生物炭的T1和T3处理则有所降低,分别为44.20 mg·kg-1和43.09 mg·kg-1.准二级动力学模型更好地拟合不同处理下土壤对阿特拉津吸附特征,T2和T4处理下吸附速率常数K分别为0.257 kg·mg-1·h-1和0.339 kg·mg-1·h-1,显著高于未添加生物炭处理的T1和T3处理(K分别为-0.083 kg·mg-1·h-1和-0.261 kg·mg-1·h-1).内扩散模型显示添加生物炭后,土壤对阿特拉津的吸附是一个由边界扩散、内部孔隙扩散等多因素控制的复杂化学过程.添加生物炭可显著提高土壤pH、有机碳、碱解氮、速效磷和速效钾含量,其中土壤有机碳含量与阿特拉津最大吸附量之间存在显著的正相关关系(P<0.05).由此可见,添加生物炭可以提高土壤对阿特拉津的固持能力,减少其淋溶迁移风险,从而达到修复阿特拉津污染土壤的目的.

English Abstract

参考文献 (38)

目录

/

返回文章
返回