发酵松树皮和花生壳对地下水中砷的减毒效应

唐章, 杨新瑶, 闫馨予, 陈芳敏, 付晶晶, 黄丽红, 杨文娴, 杨悦锁. 发酵松树皮和花生壳对地下水中砷的减毒效应[J]. 环境化学, 2021, (3): 868-875. doi: 10.7524/j.issn.0254-6108.2019102602
引用本文: 唐章, 杨新瑶, 闫馨予, 陈芳敏, 付晶晶, 黄丽红, 杨文娴, 杨悦锁. 发酵松树皮和花生壳对地下水中砷的减毒效应[J]. 环境化学, 2021, (3): 868-875. doi: 10.7524/j.issn.0254-6108.2019102602
TANG Zhang, YANG Xinyao, YAN Xinyu, CHEN Fangmin, FU Jingjing, HUANG Lihong, YANG Wenxian, YANG Yuesuo. Detoxification effect of fermented pine bark and peanut shell against groundwater arsenic[J]. Environmental Chemistry, 2021, (3): 868-875. doi: 10.7524/j.issn.0254-6108.2019102602
Citation: TANG Zhang, YANG Xinyao, YAN Xinyu, CHEN Fangmin, FU Jingjing, HUANG Lihong, YANG Wenxian, YANG Yuesuo. Detoxification effect of fermented pine bark and peanut shell against groundwater arsenic[J]. Environmental Chemistry, 2021, (3): 868-875. doi: 10.7524/j.issn.0254-6108.2019102602

发酵松树皮和花生壳对地下水中砷的减毒效应

    通讯作者: 杨新瑶, E-mail: xinyao.yang@syu.edu.cn
  • 基金项目:

    辽宁特聘教授项目(辽教函[2018]35号),国家自然科学基金(41672248)和沈阳市中青年科技创新人才团队项目(RC170244)资助.

Detoxification effect of fermented pine bark and peanut shell against groundwater arsenic

    Corresponding author: YANG Xinyao, xinyao.yang@syu.edu.cn
  • Fund Project: Supported by the Liaoning Distinguished Professor Program (Liaojiaohan[2018] No.35), the National Natural Science Foundation of China (41672248) and Shenyang Scientific Innovation Group Program for Young and Middle-aged Scientist(RC170244).
  • 摘要: 本研究探索了通过发酵的松树皮和花生壳强化地下水中土著微生物活性来降低砷毒性的方法.静态批实验结果表明地下水中化学氧化和生物氧化过程的耦合,会促使As(Ⅲ)转化为As(Ⅴ),从而降低砷的毒性.加入有机基质可提升As(Ⅲ)的去除效率,花生壳的效果强于松树皮.通过对实验体系的化学及微生物表征,发现有机基质促进As(Ⅲ)减毒的主要机理如下:a)释放有机物,造成体系Eh值升高(即氧化性增强),从而促进As(Ⅲ)的化学氧化反应;b)为微生物生长提供有机碳源,促进砷代谢细菌、砷氧化细菌及反硝化细菌增长,从而强化As(Ⅲ)的微生物氧化反应.此外,有机基质对砷的吸附也在一定程度上降低了砷的浓度.研究结果揭示了应用农业废弃物治理地下水中砷污染的新思路,对于原位绿色修复砷污染地下水具有一定科学价值.
  • 加载中
  • [1] 王悦,周孜迈,邓文娜,等.两种体系去除水体中的砷[J].环境化学,2018,37(12):2613-2620.

    WANG Y, ZHOU Z M, DENG W N, et al. Removal of arsenic from water by two systems[J]. Environmental Chemistry, 2018, 37(12):2613-2620(in Chinese).

    [2] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization, and International Agency for Research on Cancer. Some drinking-water disinfectants and contaminants, including arsenic[R]. 2004, 84:269.
    [3] 汪宁欣,刘婷婷,谢希琳,等.无机砷与两种典型天然有机质络合行为比较[J].环境科学学报,2019,39(8):2593-2601.

    WANG N X, LIU T T, XIE X L, et al. Comparison of complexation behavior between inorganic arsenic and two typical natural organic matter[J]. Acta Scientiae Circumstantiate, 2019, 39(8):2593-2601(in Chinese).

    [4] GUO H M, ZHANG D, NI P, et al. Hydrogeological and geochemical comparison of high arsenic groundwaters in Inland Basins, P.R. China[J]. Procedia Earth & Planetary Science, 2017, 17:416-419.
    [5] RASHEED H, SLACK R, KAY P. Human health risk assessment for arsenic:A critical review[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(19/20):1529-1583.
    [6] 黄飞,周昉,姜舒扬,等.绿藻胞外聚合物对无机砷生物累积特征的影响[J].环境化学,2019,38(5):1021-1027.

    HUANG F, ZHOU F, JIANG S Y, et al. Effects of extracellular polymers of green algae on bioaccumulation characteristics of inorganic arsenic[J]. Environmental Chemistry, 2019, 38(5):1021-1027(in Chinese).

    [7] 刘金鑫,谢邵文,杨芬,等.不同生长期和磷浓度下砷酸盐对铜绿微囊藻生长及砷吸收的影响[J].环境科学学报,2017,37(6):2061-2068.

    LIU J X, XIE S W, YANG F, et al. Effect of arsenate on the growth and arsenic absorption of Microcystis aeruginosa in different growth period and phosphorus concentration[J]. Acta Scientiae Circumstantiate, 2017, 37(6):2061-2068(in Chinese).

    [8] SHAKOOR M B, NAWAZ R, HUSSAIN F, et al. Human health implications, risk assessment and remediation of As-contaminated water:A critical review[J]. Science of the Total Environment, 2017, 601/602:756-769.
    [9] TSHERI M, MAHMUDY GHARAIE M H, MEHRZAD J, et al. Hydrogeochemical and isotopic evaluation of arsenic contaminated waters in an argillic alteration zone[J]. Journal of Geochemical Exploration, 2017, 175:1-10.
    [10] 丁腾达,阚啸林,吴振华,等.砷对绿藻的毒性效应及氧化还原条件的影响[J].环境化学,2016,35(5):1084-1089.

    DING T D, KAN X L, WU Z H, et al. Toxic effect of arsenic on green algae and the effect of redox conditions[J]. Environmental Chemistry, 2016, 35(5):1084-1089(in Chinese).

    [11] 修伟.耐砷铁氧化菌的除砷特征及其机理研究[D].北京:中国地质大学,2016. XIU W. Study on arsenic removal characteristics and mechanism of arsenic resistant iron oxide bacteria[D]. Beijing:China University of Geosciences, 2016(in Chinese).
    [12] GUO H M, WEN D G, LIU Z Y, et al. A review of high arsenic groundwater in Mainland and Taiwan, China:Distribution, characteristics and geochemical processes[J]. Applied Geochemistry, 2014, 41(1):196-217.
    [13] 胡一帆,王文兵,仵彦卿.弱磁场强化零价铁去除水中砷的效果[J].环境化学,2019,38(5):1074-1081.

    HU Y F, WANG W B, WU Y Q. Effect of strengthening zero valent iron to remove arsenic from water by weak magnetic field[J]. Environmental Chemistry, 2019, 38(5):1074-1081(in Chinese).

    [14] 于士淼.自然水体生物除砷技术研究[D].济南:山东建筑大学,2012. YU S M. Study on biological arsenic removal technology in natural water[D]. Jinan:Shandong Jianzhu University, 2012(in Chinese)
    [15] FAZI S, AMALFITANO S, CASENTINI B, et al. Arsenic removal from naturally contaminated waters:A review of methods combining chemical and biological treatments[J]. Rendiconti Lincei, 2016, 27(1):51-58.
    [16] ZHANG J, ZHOU W, LIU B, et al. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science & Technology, 2015, 49(10):5956-5964.
    [17] VALENZUELA C, CAMPOS V L, YANEZ J, et al. Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile[J]. Bulletin of Environmental Contamination & Toxicology, 2009, 82(5):593-596.
    [18] 杨宏,熊晓丽,段晓东,等.贫营养条件下生物除铁除锰滤池生态稳定性研究[J].环境科学,2010,31(1):99-103.

    YAANG H, XIONG X L, DUAN X D, et al. Study on ecological stability of biological iron and manganese removal filter under poor nutrition condition[J]. Environmental Sciences, 2010, 31(1):99-103(in Chinese).

    [19] GARBOWSKI T. Changes in the physico-chemical parameters of water as a result of long-term contact with biomass, on the example of pine bark (Pinus sylvestris)[J]. Water Air and Soil Pollution, 2019, 230:104.
    [20] VASSILEV S V, BAXTER D, ANDERSEN L K, et al. An overview of the organic and inorganic phase composition of biomass[J]. Fuel, 2012, 94:1-33.
    [21] 周梦娟,缪恒锋,陆震明,等.碳源对反硝化细菌的反硝化速率和群落结构的影响[J].环境科学研究,2018,31(12):2047-2054.

    ZHOU M J, LIAO H F, LU Z M, et al. Effects of carbon sources on denitrification rate and community structure of denitrifying bacteria[J]. Research of Environmental Sciences, 2018, 31(12):2047-2054(in Chinese).

    [22] AU D, AI N, DUC T V, et al. Bactericidal magnetic nanoparticles with iodine loaded on surface grafted poly (N-vinylpyrrolidone)[J]. Journal of Materials Chemistry B, 2015, 3(5):840-848.
    [23] 孟婷,杨宏.高效反硝化细菌的快速培养及群落结构多样性分析[J].环境科学,2017,38(9):3816-3822.

    MENG T, YANG H. Rapid culture and diversity analysis of community structure of denitrifying bacteria with high efficiency[J]. Environmental Science, 2017, 38(9):3816-3822(in Chinese).

    [24] CROGNALE S, CASENTINI B, AMALFITANO S, et al. Biological As(Ⅲ) oxidation in biofilters by using native groundwater microorganisms[J]. Science of The Total Environment, 2019, 651:93-102.
    [25] LI X Y, ZHANG L S, WANG G J. Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales[J]. PLOS ONE, 2014, 9(3):e92236.
    [26] 杨柳.生物滤池同步去除地下水中铁、锰、砷的工艺及机理研究[D].哈尔滨:哈尔滨工业大学,2014. YANG L. Simultaneous removal of iron, manganese and arsenic from groundwater by Biofilter[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese).
  • 加载中
计量
  • 文章访问数:  1660
  • HTML全文浏览数:  1660
  • PDF下载数:  24
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-26

发酵松树皮和花生壳对地下水中砷的减毒效应

    通讯作者: 杨新瑶, E-mail: xinyao.yang@syu.edu.cn
  • 1. 沈阳大学, 区域污染环境生态修复教育部重点实验室, 沈阳, 110044;
  • 2. 沈阳大学, 城市有害生物治理辽宁省重点实验室, 沈阳, 110044;
  • 3. 厦门大学, 厦门大学-极元科技联合实验室, 厦门, 361005;
  • 4. 极元科技, 厦门, 361005
基金项目:

辽宁特聘教授项目(辽教函[2018]35号),国家自然科学基金(41672248)和沈阳市中青年科技创新人才团队项目(RC170244)资助.

摘要: 本研究探索了通过发酵的松树皮和花生壳强化地下水中土著微生物活性来降低砷毒性的方法.静态批实验结果表明地下水中化学氧化和生物氧化过程的耦合,会促使As(Ⅲ)转化为As(Ⅴ),从而降低砷的毒性.加入有机基质可提升As(Ⅲ)的去除效率,花生壳的效果强于松树皮.通过对实验体系的化学及微生物表征,发现有机基质促进As(Ⅲ)减毒的主要机理如下:a)释放有机物,造成体系Eh值升高(即氧化性增强),从而促进As(Ⅲ)的化学氧化反应;b)为微生物生长提供有机碳源,促进砷代谢细菌、砷氧化细菌及反硝化细菌增长,从而强化As(Ⅲ)的微生物氧化反应.此外,有机基质对砷的吸附也在一定程度上降低了砷的浓度.研究结果揭示了应用农业废弃物治理地下水中砷污染的新思路,对于原位绿色修复砷污染地下水具有一定科学价值.

English Abstract

参考文献 (26)

目录

/

返回文章
返回