钾改性蒙脱石磁性微球对铯的吸附性能
Adsorption properties of potassium modified montmorillonite magnetic microspheres for cesium
-
摘要: 本研究以钙基蒙脱石(Ca-MMT)为原料,通过K+作用制得改性蒙脱石粉(K-MMT),经海藻酸钠交联作用,将改性蒙脱石与永磁体(BaFe12O19)结合,制成钾改性蒙脱石磁性微球(KMBC).对比了Ca-MMT、K-MMT、KMBC对Cs+的吸附差异,并通过SEM-EDS、FTIR、XRD、XPS分析了K-MMT的微观结构及理化性质.试验结果表明,K+对蒙脱石的改性以离子交换为主,改性后晶体层间距变小,吸附量K-MMT>KMBC>Ca-MMT,分别为57.08、45.13、45.05 mg·g-1;K-MMT对Cs+的吸附属于吸热反应,反应在2 h内可达到平衡,35℃时KMBC的最大吸附量为136.08 mg·g-1;随着pH的增加,KMBC对Cs+的吸附量呈先增大后减小的趋势;吸附机理主要包括离子交换和内层扩散.Abstract: In this study, calcium-based montmorillonite (Ca-MMT) was modified by K+ to produce potassium-modified montmorillonite (K-MMT). Through the cross-linking of sodium alginate, the modified montmorillonite was further combined with permanent magnet (BaFe12O19) to form potassium-modified montmorillonite magnetic microspheres (KMBC). The adsorption behaviors of Ca-MMT, K-MMT and KMBC on Cs+ were compared while the associated microstructure and physicochemical properties were characterized by SEM-EDS, FTIR, XRD and XPS analysis. The results showed that the modification of montmorillonite by K+ was mainly achieved by ion exchange and it reduced the spacing of crystal layer. The adsorption capacity followed the order of K-MMT>KMBC>Ca-MMT, which was 57.08, 45.13, and 45.05 mg·g-1, respectively. The adsorption of Cs+ by K-MMT was an endothermic reaction, which reached equilibrium within 2 hours. The maximum Cs+ adsorption capacity of KMBC was 136.08 mg·g-1 at 35℃. With inceasing pH, the adsorption capacity of Cs+ by KMBC went up first and then decreased. The adsorption mechanism mainly included ion exchange and inner layer diffusion.
-
Key words:
- potassium modification /
- cesium pollution /
- montmorillonite /
- magnetic adsorption material /
- adsorption
-
-
[1] DUDLEY B. BP Energy Outlook 2017[R/OL].[2019-11-6].http://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html. [2] AVERY S V. Fate of caesium in the Environment:Distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems[J]. Journal of Environmental Radioactivity, 1996, 30(2):139-171. [3] MIZUNO T, KUBO H. Overview of active cesium contamination of freshwater fish in Fukushima and Eastern Japan[J]. Scientific Reports, 2013,3:1742. [4] VIPIN A K, HU B, FUGETSU B. Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water[J]. Journal of Hazardous Materials, 2013,258/259:93-101. [5] 韩非, 顾平, 张光辉. 去除放射性废水中铯的研究进展[J]. 工业水处理, 2012,32(1):10-14. HAN F, GU P, ZHANG G H. Research progress in the cesium removal from radioactive liquid waste[J]. Industrial Water Treatment, 2012,32(1):10-14(in Chinese).
[6] CHOI S,AMISTADI M K,CHOROVER J, et al. Clay mineral weathering and contaminant dynamics in a caustic aqueous system[J]. Geochimica et Cosmochimica Acta,2005,69(18):4437-4451. [7] 任晓惠. 改性蒙脱石对砷的吸附作用研究[D]. 广州:华南理工大学,2013. REN X H. Study on Adsorption Charactiristics of Arsenic Using Modified Montmorillonite.[D].Guangzhou:SouthChina University of Technology, 2013(in Chinese). [8] HANG L, WU P X, ZHU N W. Evaluation of Cs + removal from aqueous solution by adsorption on ethylamine-modified montmorillonite[J]. Chemical Engineering Journal,2013,225:237-244. [9] KARAMANIS D, ASSIMAKOPOULOS P A. Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions[J]. Water Research,2007,41(9):1897-1906. [10] XIA M, ZHENG X, DU M Y, et al. The adsorption of Cs+, from wastewater using lithium-modified montmorillonite caged in calcium alginate beads[J]. Chemosphere, 2018,203:271-280. [11] ZHENG X M, DOU J F, YUAN J. et al. Removal of Cs+ from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite[J].Journal of Environmental Sciences,2017,56(6):12-24. [12] 刘恒辰, 陈雅兰, 叶兆勇, 等.普鲁士蓝类复合材料去除放射性铯的研究进展[J].核化学与放射化学,2018,40(5):273-284. LIU H C, CHEN Y L, YE Z Y,et al. Research and progress on removal of cesium by prussian blue analogue composites[J]. Journal of Nuclear and Radiochemistry, 2018,40(5):273-284(in Chinese).
[13] 范桥辉. 放射性核素在固-液界面吸附行为研究[D].兰州:兰州大学,2011. FAN Q H. The investigation of radionuclides sorption on solid-water interface[D]. Lanzhou:Lanzhou University,2011(in Chinese). [14] 刘婷婷,潘志东,黎振源,等.用于吸附重金属离子的磁性纳米伊/蒙黏土的制备[J].硅酸盐学报,2017,45(1):29-36. LIU T T, PAN Z D, LI Z, et al. In situ synthesis of magnetic nano-sized illite-smectite clay for adsorption of heavy metal ions in aqueous solution[J]. Journal of the Chinese Ceramic Society, 2017,45(1):29-36(in Chinese).
[15] 刘颖. 掺杂M-型钡铁氧体的制备及磁学性能研究[D]. 哈尔滨:哈尔滨工程大学,2007. LIU Y. Preparations and magnetic properties of substituted barium ferrite[D].Harbin:Harbin Engineering University,2007(in Chinese). [16] ZHENG X M, DOU J F, XIA M, et al. Ammonium-pillared montmorillonite-CoFe2O4, composite caged in calcium alginate beads for the removal of Cs+, from wastewater[J]. Carbohydrate Polymers, 2017, 167:306-316. [17] 汤铨,卢琴,孙历娜,等.溶胶-凝胶法制备纳米钡铁氧体磁性能[J].稀有金属材料与工程,2010,39(S2):372-375. TANG S, LU Q, SUN L N, et al. Magnetic properties of nanocrystalline barium hexaferrite prepared by sol-gel process[J]. Rare Metal Materials and Engineering, 2010,39(S2):372-375(in Chinese).
[18] VOLKOV G, PAULA S, DEAMER D.W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers[J]. Bioelectrochemistry and Bioenergetics,1997,42(2):153-160. [19] WANG M M, REN L S, WANG D Y, et al. Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods[J]. Journal of Environmental Sciences, 2019,79:91-99. [20] KOŁODYŃSKA D, WNETRZAK R, LEAHY J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal[J]. Chemical Engineering Journal, 2012,197:295-305. [21] 刘娟娟,梁东丽,吴小龙,等. Cr(Ⅵ)对两种黏土矿物在单一及复合溶液中Cu(Ⅱ)吸附的影响[J].环境科学,2014,35(1):254-262. LIU J J, LIANG D L, WU X L, et al. Effect of Cr(Ⅵ) anions on the Cu(Ⅱ) adsorption behavior of two kinds of clay minerals in single and binary solution[J]. Environmental Science, 2014,35(1):254-262(in Chinese).
[22] 朱立华. 交联海藻酸钙纤维的制备与性能研究[D].青岛:青岛大学,2012. ZHU L H. Preparation and properties of crosslinked calcium alginate fiber[D]. Qongdao:Qingdao University,2012(in Chinese). [23] YU X B, WEI C H, KE L, et al. Preparation of trimethylchlorosilane-modified acid vermiculites for removing diethyl phthalate from water[J]. Journal of Colloid and Interface Science,2012, 369(1):344-351. [24] 祁宇翔. 钾长石合成沸石及用于去除水溶液中的铅镉[D].北京:中国地质大学, 2018. QI Y X. Synthesis of merlinoite and analcime and its removal of Cd2+ and Pb2+ from aqueous solutions[D]. Beijing:China University of Geosciences (Beijing),2018 (in Chinese).
[25] BERRIN T, SAGER J, RECTOR T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Separation and Purification Technology,2006,51(1):40-47. [26] 周建兵, 吴平霄, 朱能武, 等.十二烷基磺酸钠(SDS)改性蒙脱石对Cu2+、Cd2+的吸附研究[J].环境科学学报,2010,30(1):88-96. ZHOU J B, WU P X, ZHU N W, et al. Adsorption of Cu2+ and Cd2+ by SDS-modified montmorillonite[J]. Acta Scientiae Circumstantiae, 2010,30(1):88-96(in Chinese).
[27] NIST X-ray Photoelectron Spectroscopy Database:NIST Standard Reference Database 20, Version 4.1[DB/OL].[2019-11].https://srdata.nist.gov/xps/selEnergyType.aspx [28] CRIST B V. Handbook of Monochromatic XPS Spectra, The Elements of Native Oxides[M]. Portland, 2000. [29] FROST R L, KLOPROGGE J T. Infrared emission spectroscopic study of brucite[J]. Spectrochim Acta A, 1999(55):2195-2205. [30] LI X, LU H, ZHANG Y, et al. Fabrication of magneticalginate beads with uniform dispersion of CoFe2O4 by the polydopaminesurface functionalization for organic pollutants removal[J]. Applied Surface Science, 2016,389:567-577. [31] WU P X, DAI Y P, LONG H, et al. Characterization of organomontmorillonites and comparison for Sr(Ⅱ) removal:Equilibrium and kinetic studies[J]. Chem Eng J, 2012,191:288-296. -

计量
- 文章访问数: 2371
- HTML全文浏览数: 2371
- PDF下载数: 104
- 施引文献: 0