丙酮冲洗法提高纳米零价铁抗氧化性能
Anti-oxidation ability of nanoscale zero valent iron viaacetone flushing method
-
摘要: 纳米零价铁(nanoscale zero valent iron,nZVI)具有还原能力强、便于回收等优势,是目前广泛应用于地下水污染治理的一种活性纳米材料.然而,nZVI易被空气氧化失活及其储存难等问题严重地限制了其应用.为增强nZVI抗氧化能力,本文首次采用丙酮(acetone)对新制备的nZVI样品进行简单冲洗,并以水洗(water)作为对照,分别得到nZVIA和nZVIW样品.采用扫描电镜(SEM)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)、傅里叶变换红外吸收光谱(FT-IR)和热重分析(TGA)等技术对样品的物理结构、表面性质进行了表征.结果发现,相较于表面粗糙、有大量氧化物存在的nZVIW,nZVIA为表面光滑球形,说明经丙酮简单冲洗能有效提高Fe0纯度.通过对在空气中持续暴露15 d后的样品进行XRD测试及其对甲基橙(MO)降解动力学实验,发现nZVIA具有优异的抗氧化能力,这源于通过配位吸附在nZVIA表面的丙酮分子起到的阻隔作用.此外,通过测试两种样品对三氯乙酸(trichloroacetic acid,TCA)脱氯实验,发现nZVIA对TCA的降解速率是nZVIW的3.37倍,对TCA具有更快的脱氯能力.本研究为制备高活性且兼有抗氧化能力的nZVI提供了一种十分简单的改性方法.Abstract: Thanks to the advantages in high-reductive capacity and recovery available, nanoscale Zero Valent Iron (nZVI) has been widely used as an active nanomaterial in the decontamination of groundwater. However, nZVI is easily oxidized and deactivated by air and difficult to store, which significantly limits its application. In order to improve the anti-oxidation ability of nZVI, acetone was firstly applied to rinse nZVI particles to obtain nZVIW, and water was used as the control regent to prepare nZVIA. The structure and properties of the two samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared Fourier absorption spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Compared to the presence of a large amount of oxides on the rough surface of nZVIW, nZVIA had spherical structure with smooth surface, indicating that simple washing of acetone can effectively improve the purity of Fe0. According to the XRD analysis and degradation experiment of methyl orange (MO) of samples that suffered 15 days of continuous exposure to air, nZVIA displayed excellent antioxidant capacity, which was mainly due to the barrier effect of acetone molecules adsorbed on the surface of nZVIA through coordination. Furthermore, the dechlorination experiment of Trichloroacetic Acid (TCA) showed that the degradation rate of TCA by nZVIA is 3.37 times higher than that of nZVIW and nZVIA had faster dechlorination rate of TCA. This study provided a very simple modification method for the preparation of nZVI with high activity and antioxidant capacity.
-
Key words:
- nZVI /
- acetone /
- surface modification /
- anti-oxidation /
- reactivity
-
-
[1] SHIHY H, CHOU H L, PENGY H, et al. Synergistic effect of microscale zerovalent iron particles combined with anaerobic sludges on the degradation of decabromodiphenyl ether[J]. Bioresource Technology, 2012, 108:14-20. [2] ZHANG Z Z, XU J J, SHI Z J, et al. Unraveling the impact of nanoscale zero-valent iron on the nitrogen removal performance and microbial community of anammox sludge[J].Bioresource Technology, 2017, 243(243):883-892. [3] ELJAMAL O, SASAKI K, TSURUYAMA S, et al. Kinetic model of arsenic sorption onto zero-valent iron (ZVI)[J]. Water Quality Exposure and Health, 2011, 2(3/4):125-132. [4] CHOE S, CHANG Y Y, HUANG K Y, et al. Kinetics of reductive denitrification by nanoscale zero-valent iron[J]. Chemosphere, 2000, 41(8):1307-1311. [5] 杨艺琳, 周孜迈, 邓文娜, 等. 浮石负载纳米零价铁去除水相中的砷(Ⅴ)[J]. 环境化学, 2017, 36(3):598-607. YANG Y L, ZHOU Z M, DENG W N, et al. Removal of arsenic (Ⅴ) from aqueous solutions using improved nanoscale zero-valent iron on pumice[J]. Environmental Chemistry, 2017, 36(3):598-607(in Chinese).
[6] SHI L N, ZHANG X, CHEN Z L. Removal of chromium (Ⅵ) from wastewater using bentonite-supported nanoscale zero-valentiron[J]. Water Research, 2011, 45(2):886-892. [7] WANG F, GAO Y, SUN Q, et al. Degradation of microcystin-LR using functional clay supported bimetallic Fe/Pd nanoparticles based on adsorption and reduction[J]. Chemical Engineering Journal, 2014, 255:55-62. [8] CAO Z, LIU X, XU J, et al. Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent Iron[J]. Environmental Science and Technology, 2017, 51(19):11269-11277. [9] 智伟迪,涂耀仁,段艳平,等.有机改性蒙脱石负载纳米零价铁去除水体新兴污染物双氯芬酸[J]. 环境化学, 2020, 39(5):1225-1234. ZHI W D, TU Y R, DUAN Y P, et al. Organic modified montmorillonite with loaded nano zero-valent iron for removing emerging pollutant diclofenac[J]. Environmental Chemistry, 2020, 39(5):1225-1234(in Chinese).
[10] 连伟涛. PDA/NZVI@BC复合材料制备及其去除水中四环素的研究[D]. 昆明:昆明理工大学, 2018. LIAN W T. Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution[D]. Kunming:Kunming University of Science and Technology, 2018(in Chinese). [11] ZHAO L Z, ZHAO Y S, YANG B J, et al. Application of carboxymethyl cellulose-stabilized sulfidated nano zerovalent iron for removal of Cr(Ⅵ) in simulated groundwater[J]. Water, Air, and Soil Pollution, 2019, 230(6):1-14. [12] DAI Y, HU Y, JIANG B, et al. Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction[J]. Journal of Hazardous Materials, 2016, 309:249-258. [13] WENG X, SUN Q, LIN S, et al. Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles[J]. Chemosphere, 2014, 103:80-85. [14] FU F, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment:A review[J]. Journal of Hazardous Materials, 2014, 267:194-205. [15] FAN D, JOHNSON G O, TRATNYEK P G, et al. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)[J]. Environmental Science and Technology, 2016, 50(17):9558-9565. [16] LIU X S, XU H M, WANG L L, et al. Surface nano-traps of Fe0/COFs for arsenic(Ⅲ) depth removal from wastewater in non-ferrous smelting industry[J]. Chemical Engineering Journal, 2020, 381:122559. [17] KIM E J, KIM J H, CHANG Y S, et al. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles[J]. Environmental Science and Technology, 2014, 48(7):4002-4011. [18] RUIZ T, CLAUDIO A, ARAUJO M, et al. Preparation of air stable nanoscale zerovalent iron functionalized by ethylene glycol without inert condition[J]. Chemical Engineering Journal, 2018, 336:112-122. [19] HAN Y L, YAN W L. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles:Reactivity enhancement through sulfidation treatment[J]. Environmental Science and Technology, 2016, 50(23):12992-13001. [20] ZHOU Y, WANG T, ZHI D, et al. Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics:A review[J]. Journal of Materials Science, 2019, 54(19):12171-12188. [21] FAN D, JOHNSON G O, TRATNYEK P G, et al. Sulfidation of nanozerovalentiron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)[J]. Environmental Science and Technology, 2016, 50(17):9558-9565. [22] LOUY L,CAI Y C, TONG Y N, et al. Interaction between pollutants during the removal of polychlorinated biphenyl-heavy metal combined pollution by modified nanoscale zero-valent iron[J]. Science of the Total Environment, 2019, 673:120-127. [23] 胡斌. 世界环氧树脂生产现状与发展趋势[J]. 国际化工信息, 2002(1):11-14. HU B. Current situation and development trend of epoxy resin production in the world[J]. Global Chemical Information, 2002 (1):11-14(in Chinese).
[24] 杨海明, 赵小彤, 安百钢, 等. 钯负载泡沫镍电极电化学还原水中三氯乙酸[J]. 化工环保, 2017, 37(4):404-408. YANG H M, ZHAO X T, AN B G, et al. Electrochemical reduction of acetocaustin in aqueous solution byPd-loaded nickel foam electrode[J]. Environmental Protection of Chemical Industry, 2017, 37(4):404-408(in Chinese).
[25] 赵玉丽, 李杏放. 饮用水消毒副产物:化学特征与毒性[J]. 环境化学, 2011, 30(1):20-33. ZHAO Y L, LI X F. Drinking water disinfection by-products:Chemical characterization and toxicity[J]. Environmental Chemistry, 2011, 30(1):20-33(in Chinese).
[26] 贾光辉, 董高钟. 氯化消毒副产物的控制研究进展[J]. 山西建筑, 2012, 38(20):203-205. JIA G H, DONG G Z. On research survey of control over chlorination disinfection by-products[J]. Shanxi Architecture, 2012, 38(20):203-205(in Chinese).
[27] ZHU F, HE S Y, LIU T. Effect of pH, temperature and co-existing anions on the Removal of Cr(Ⅵ) in groundwater by green synthesized nZVI/Ni[J]. Ecotoxicology and Environmental Safety, 2018, 163:544-550. [28] HOZALSKIRM, ZHANG L, ARNOLD, et al. Reduction of haloacetic acids by Fe0:Implications for treatment and fate[J]. Environmental Science and Technology, 2001, 35(11):2258-2263. [29] BOPARAI H K, JOSEPH M, DENIS M. O'Carroll. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. Journal of Hazardous Materials, 2011, 186(1):458-465. [30] MAYO D W, MILLER F A, HANNAH R W, et al. In survey of infrared and raman group frequencies[M]. America:Wiley Interscience, 2004. -

计量
- 文章访问数: 2841
- HTML全文浏览数: 2841
- PDF下载数: 108
- 施引文献: 0