京津冀火葬场烟气的污染物排放特征及减排潜力分析

张世豪, 陈曦, 翟晓曼, 刘杰, 邢啸林, 王宝成, 王俊, 薛亦峰, 王玮. 京津冀火葬场烟气的污染物排放特征及减排潜力分析[J]. 环境化学, 2021, (4): 1059-1070. doi: 10.7524/j.issn.0254-6108.2019110602
引用本文: 张世豪, 陈曦, 翟晓曼, 刘杰, 邢啸林, 王宝成, 王俊, 薛亦峰, 王玮. 京津冀火葬场烟气的污染物排放特征及减排潜力分析[J]. 环境化学, 2021, (4): 1059-1070. doi: 10.7524/j.issn.0254-6108.2019110602
ZHANG Shihao, CHEN Xi, ZHAI Xiaoman, LIU Jie, XING Xiaolin, WANG Baocheng, WANG Jun, XUE Yifeng, WANG Wei. Pollutants emission characteristics and emission reduction potential of crematoria flue gas in Beijing-Tianjin-Hebei region, China[J]. Environmental Chemistry, 2021, (4): 1059-1070. doi: 10.7524/j.issn.0254-6108.2019110602
Citation: ZHANG Shihao, CHEN Xi, ZHAI Xiaoman, LIU Jie, XING Xiaolin, WANG Baocheng, WANG Jun, XUE Yifeng, WANG Wei. Pollutants emission characteristics and emission reduction potential of crematoria flue gas in Beijing-Tianjin-Hebei region, China[J]. Environmental Chemistry, 2021, (4): 1059-1070. doi: 10.7524/j.issn.0254-6108.2019110602

京津冀火葬场烟气的污染物排放特征及减排潜力分析

    通讯作者: 薛亦峰, E-mail: xueyifeng@cee.cn 王玮, E-mail: wangwei67626@126.com
  • 基金项目:

    国家自然科学基金(21806012),北京市优秀人才培养资助项目(2017000021733G105)和中央级公益性科研院所基本科研业务费项目(118011000000150004)资助.

Pollutants emission characteristics and emission reduction potential of crematoria flue gas in Beijing-Tianjin-Hebei region, China

    Corresponding authors: XUE Yifeng, xueyifeng@cee.cn ;  WANG Wei, wangwei67626@126.com
  • Fund Project: Supported by the National Natural Science Foundation of China (21806012), Beijing Outstanding Talent Training Program (2017000021733G105) and Fundmental Research Funds in the Central Public Research Institutes (118011000000150004).
  • 摘要: 京津冀人口基数大,年死亡人数多,相应遗体火化量和遗物祭品焚烧量较大,且由于火葬场排放的污染控制程度较低,其排放对周边环境和人体健康产生影响.为进一步探明京津冀火葬场的污染排放特征,本研究对区域内19家火葬场的19台遗体火化机和6台遗物祭品焚烧炉开展实地排放监测,获取火化机和遗物祭品焚烧烟气的颗粒物及化学组分、挥发性有机污染物(VOCs)及其化学组分和其他气态污染物的排放水平,识别了火葬场源谱的特征,并核算得到京津冀火葬场烟气污染物的本地化排放因子.结合活动水平数据,采用排放因子法建立了京津冀火葬场烟气污染物排放清单,并分析了其减排潜力.结果表明,京津冀地区火葬场烟气中TSP、CO平均排放浓度分别是国家标准限值的4.9倍和1.3倍,烟气净化装置对污染物的去除效果显著.火化机烟气细颗粒物占比较大,PM2.5/TSP=0.73;PM2.5化学组分中有机物含量较高,其中OC平均占比为25.3%.火化机烟气VOCs组分中苯及苯系物、烯烃、烷烃含量较高,平均占比88.7%,可能会对暴露人群产生健康风险.根据排放清单,2016年京津冀火葬场TSP、PM10、PM2.5、CO的排放量相比2007年分别下降了47.8%、47.8%、47.9%、26.1%.目前京津冀火葬场安装净化装置比例并不高,且遗物祭品焚烧烟气直排现象普遍,其减排空间较大.
  • 加载中
  • [1] 中华人民共和国民政部. 2017年社会服务发展统计公报:2017[R]. 北京:中华人民共和国民政部, 2018. Ministry of Civil Affairs of the People's Republic of China. Statistical communique on social service development in 2017[R]. Beijing:Ministry of Civil Affairs of the People's Republic of China, 2018(in Chinese).
    [2] LI S, LIU G, ZHENG M, et al. Comparison of the contributions of polychlorinated dibenzo-p-dioxins and dibenzofurans and other unintentionally produced persistent organic pollutants to the total toxic equivalents in air of steel plant areas[J]. Chemosphere, 2015, 126, 73-77.
    [3] XUE Y F, TIAN H Z, YAN J, et al. Present and future emissions of HAPs from crematories in China[J]. Atmospheric Environment, 2016, 124, Part A, 28-36.
    [4] WIECHMANN B, GLEIS M. Mercury emissions of crematoria-a decreasing issue[J]. Gefahrstoffe Reinhaltung Der Luft, 2012, 72, 241-244.
    [5] 尹文华, 于晓巍, 韩静磊, 等. 遗体火化二噁英类排放水平及影响因素[J]. 环境科学, 2015, 36(10):3596-3602.

    YIN W H, YU X W, HAN J L, et al. Emission of PCDD/Fs from crematories and its influencing factors[J]. Environmental Science, 2015, 36(10):3596-3602(in Chinese).

    [6] 中华人民共和国生态环境部. 2017年中国生态环境状况公报:2017[R]. 北京:中华人民共和国生态环境部, 2018. Ministry of Ecology and Environment of the People's Republic of China. Communique on the State of the Ecological Environment in China in 2017[R]. Beijing:Ministry of Ecology and Environment of the People's Republic of China., 2018(in Chinese).
    [7] 伯鑫, 徐俊, 杜晓惠, 等. 京津冀地区钢铁企业大气污染影响评估[J]. 中国环境科学, 2017, 37(5):1684-1692.

    BO X, XU J, DU X H, et al. Impacts assessment of steel plants on air quality over Beijing-Tianjin-Hebei area[J]. China Environmental Science, 2017, 37(5):1684-1692(in Chinese).

    [8] 宗亚楠, 张强, 洪朝鹏, 等. 北京市燃煤源排放控制措施的污染物减排效益评估[J]. 环境科学研究, 2017, 30(10):1645-1652.

    ZONG Y N, ZHANG Q, HONG C P, et al. Assessment of the benefits of emission reductions from coal-fired source emission control measures in Beijing[J]. Research of Environmental Sciences, 2017, 30(10):1645-1652(in Chinese).

    [9] 薛亦峰, 闫静, 魏小强. 燃煤控制对北京市空气质量的改善分析[J]. 环境科学研究, 2014, 27(3):253-258.

    XUE Y F, YAN J, WEI X Q. Impact on air quality of beijing city by controlling the consumption of coal-fired[J]. Research of Environmental Sciences, 2014, 27(3):253-258(in Chinese).

    [10] 邢有凯. 北京市"煤改电"工程对大气污染物和温室气体的协同减排效果核算[C].//北京:中国环境科学学会. 2016:3186-3191. XING Y K. Calculation of the effect of coordinated emission reduction of air pollutants and greenhouse gases by the "Coal to Power" project in Beijing[C].//Beijing:Chinese Society for Environmental Sciences. 2016:3186

    -3191(in Chinese).

    [11] 黄玉虎, 韩凯丽, 陈丽媛, 等. 北京市混凝土搅拌站扬尘排放因子及排放清单[J]. 中国环境科学, 2017, 37(10):101-109.

    HUANG Y H, HAN K L, CHEN L Y, et al. Emission factor and inventory for fugitive dust from concrete batching plants in Beijing[J]. China Environmental Science, 2017, 37(10):101-109(in Chinese).

    [12] European Environment Agency. EMEP/EEA emission inventory guidebook 2013[EB/OL].[2019-10-16]. Denmark:EEA, 2013. http://www.eea.europa.eu//publications/emep-eea-guidebook-2013.
    [13] TAKAOKA M, OSHITA K, TAKEDA N, et al. Mercury emission from crematories in Japan[J]. Atmospheric Chemistry and Physics, 2010, 10:3665-3671.
    [14] TAKEDA N, TAKAOKA M, OSHITA K, et al. PCDD/DF and co-planar PCB emissions from crematories in Japan[J]. Chemosphere, 2014,98:91-98.
    [15] 王玮, 肖成龙, 姜思朋, 等. 火化过程中二噁英类污染物减排技术研究[J]. 环境污染与防治, 2006, 28(10):786-787.

    WANG W, XIAO C L, JIANG S P, et al. Removing dioxins from cremation flue gas[J]. Environmental Pollution and Control, 2006, 28(10):786-787(in Chinese).

    [16] 尹文华, 李旭东, 冯桂贤, 等. 火化机中二英的排放特征和指示物的研究[J]. 环境科学学报, 2017, 37(12):225-231.

    YIN W H, LI X D, FENG G X, et al. Emission characteristics of PCDD/Fs from crematories and identification of I-TEQ indicator in flue gases[J]. Acta Scientiae Circumstantiae, 2017, 37(12):225-231(in Chinese).

    [17] XUE Y F, CHENG L L, CHEN X, et al. Emission characteristics of harmful air pollutants from cremators in Beijing, China[J]. Plos One, 2018, 13(5):1-10.
    [18] 殷惠民, 刘岩, 李斯明, 等. 我国燃油式火化机的大气污染物排放特征[J]. 环境化学, 2014, 33(2):359-360.

    YIN H M, LIU Y, LI S M, et al. Emission characteristics of air pollutants for fuel-type cremator in China[J]. Environmental Chemistry, 2014, 33(2):359-360(in Chinese).

    [19] ZHENG M H, LIU P Y, PIAO M J, et al. Formation of PCDD/Fs from heating polyethylene with metal chlorides in the presence of air[J]. Science of the Total Environment, 2004, 328:115-118.
    [20] 薛亦峰, 闫静, 田贺忠, 等. 北京市火葬场大气污染物排放现状及污染特征[J]. 环境科学, 2015, 36(6):1959-1965.

    XUE Y F, YAN J, TIAN H Z, et al. Situation and characteristics of air pollutants emission from crematories in Beijing, China[J]. Environmental Science, 2015, 36(6):1959-1965(in Chinese).

    [21] 熊程程, 王玮, 李大涛, 等. 火化烟气中二噁英类排放特征及其对周边环境影响研究[J]. 环境科学与技术, 2013, 36(9):192-197.

    XIONG C C, WANG W, LI D T, et al. Characteristics of PCDD/DFs emission from crematories and their impacts to vicinity soil[J]. Environmental Science and Technology, 2013, 36(9):192-197(in Chinese).

    [22] KHEZRI B, CHAN Y Y, TIONG L Y, et al. Annual air pollution caused by the Hungry Ghost Festival.[J]. Environmental Science Processes and Impacts, 2015, 17(9):1578-1586.
    [23] SHEN H, TSAI C M, YUAN C S, et al. How incense and joss paper burning during the worship activities influences ambient mercury concentrations in indoor and outdoor environments of an Asian temple[J]. Chemosphere, 2017, 167:530-540.
    [24] CHIU J C, SHEN Y H, LI H W, et al. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from an electric arc furnace, secondary aluminum smelter, crematory and joss paper incinerators[J]. Aerosol and Air Quality Research, 2011, 11(1):13-20.
    [25] YANG H H, JUNG R C, WANG Y F, et al. Polycyclic aromatic hydrocarbon emissions from joss paper furnaces[J]. Atmospheric Environment, 2005, 39(18):3305-3312.
    [26] HU M T, CHEN S J, HUANG K L, et al. Characterization of polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from joss paper burned in a furnace with air pollution control devices[J]. Science of the Total Environment, 2009, 407(10):3290-3294.
    [27] RAU J Y, TSENG H H, LIN M D, et al. Characterization of polycyclic aromatic hydrocarbon emission from open burning of joss paper[J]. Atmospheric Environment, 2008, 42(8):1692-1701.
    [28] 中华人民共和国生态环境部. GB 13801-2015火葬场大气污染物排放标准[S]. 北京:中华人民共和国生态环境部, 2015. Ministry of Ecology and Environment of the People's Republic of China. GB 13801-2015 Emission standard of air pollutants in crematoria[S]. Beijing:Ministry of Ecology and Environment of the People's Republic of China, 2015

    (in Chinese).

    [29] 中华人民共和国民政部. 中国民政统计年鉴-2016[M]. 北京:中华人民共和国民政部, 2017. Ministry of Civil Affairs of the People's Republic of China. China civil affairs' statistical yearbook-2016[M]. Beijing:Ministry of Civil Affairs of the People's Republic of China, 2017(in Chinese).
    [30] 王艳, 郝炜伟, 程轲, 等. 城市生活垃圾露天焚烧PM2.5及其组分排放特征[J]. 环境科学, 2018, 39(8):3518-3523.

    WANG Y, HAO W W, CHENG K, et al. Emission characteristics and chemical components of PM2.5 from open burning of municipal solid waste[J]. Environmental Science, 2018, 39(8):3518-3523(in Chinese).

    [31] 唐喜斌, 黄成, 楼晟荣, 等. 长三角地区秸秆燃烧排放因子与颗粒物成分谱研究[J]. 环境科学, 2014, 35(5):1623-1632.

    TANG X B, HUANG C, LOU S R, et al. Emission factors and PM Chemical composition study of biomass burning in the Yangtze River Delta Region[J]. Environmental Science, 2014, 35(5):1623-1632(in Chinese).

    [32] 王艳, 郝炜伟, 程轲, 等. 秸秆露天焚烧典型大气污染物排放因子[J]. 中国环境科学, 2018, 38(6):2055-2061.

    WANG Y, HAO W W, CHENG K, et al. Emission factors of typical air pollutants from open burning of crop straws[J]. China Environmental Science, 2018, 38(6):2055-2061(in Chinese).

    [33] 孙月平, 苏德文, 赵霞. 低浓度苯系物对作业工人外周血象的影响[J]. 职业与健康, 2015, 31(8):118-120.

    SUN Y P, SU D W, ZHAO X. Influence of low concentration benzene series on peripheral hemogram of exposed workers[J]. Occupation and Health, 2015, 31(8):118-120(in Chinese).

  • 加载中
计量
  • 文章访问数:  2452
  • HTML全文浏览数:  2452
  • PDF下载数:  61
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-06

京津冀火葬场烟气的污染物排放特征及减排潜力分析

    通讯作者: 薛亦峰, E-mail: xueyifeng@cee.cn ;  王玮, E-mail: wangwei67626@126.com
  • 1. 首都师范大学资源环境与旅游学院, 北京, 100048;
  • 2. 民政部一零一研究所, 民政部污染控制重点实验室, 北京, 100070;
  • 3. 北京市环境保护科学研究院, 国家城市环境污染控制工程技术研究中心, 北京, 100037;
  • 4. 北京市固体废物和化学品管理中心, 北京, 100089
基金项目:

国家自然科学基金(21806012),北京市优秀人才培养资助项目(2017000021733G105)和中央级公益性科研院所基本科研业务费项目(118011000000150004)资助.

摘要: 京津冀人口基数大,年死亡人数多,相应遗体火化量和遗物祭品焚烧量较大,且由于火葬场排放的污染控制程度较低,其排放对周边环境和人体健康产生影响.为进一步探明京津冀火葬场的污染排放特征,本研究对区域内19家火葬场的19台遗体火化机和6台遗物祭品焚烧炉开展实地排放监测,获取火化机和遗物祭品焚烧烟气的颗粒物及化学组分、挥发性有机污染物(VOCs)及其化学组分和其他气态污染物的排放水平,识别了火葬场源谱的特征,并核算得到京津冀火葬场烟气污染物的本地化排放因子.结合活动水平数据,采用排放因子法建立了京津冀火葬场烟气污染物排放清单,并分析了其减排潜力.结果表明,京津冀地区火葬场烟气中TSP、CO平均排放浓度分别是国家标准限值的4.9倍和1.3倍,烟气净化装置对污染物的去除效果显著.火化机烟气细颗粒物占比较大,PM2.5/TSP=0.73;PM2.5化学组分中有机物含量较高,其中OC平均占比为25.3%.火化机烟气VOCs组分中苯及苯系物、烯烃、烷烃含量较高,平均占比88.7%,可能会对暴露人群产生健康风险.根据排放清单,2016年京津冀火葬场TSP、PM10、PM2.5、CO的排放量相比2007年分别下降了47.8%、47.8%、47.9%、26.1%.目前京津冀火葬场安装净化装置比例并不高,且遗物祭品焚烧烟气直排现象普遍,其减排空间较大.

English Abstract

参考文献 (33)

目录

/

返回文章
返回