2017年秋季海口市一次持续空气污染过程特征及成因分析

符传博, 丹利, 佟金鹤. 2017年秋季海口市一次持续空气污染过程特征及成因分析[J]. 环境化学, 2021, (4): 1048-1058. doi: 10.7524/j.issn.0254-6108.2019112704
引用本文: 符传博, 丹利, 佟金鹤. 2017年秋季海口市一次持续空气污染过程特征及成因分析[J]. 环境化学, 2021, (4): 1048-1058. doi: 10.7524/j.issn.0254-6108.2019112704
FU Chuanbo, DAN Li, TONG Jinhe. Characteristics and source analysis of a multi-day air pollution episode in Haikou City in autumn 2017[J]. Environmental Chemistry, 2021, (4): 1048-1058. doi: 10.7524/j.issn.0254-6108.2019112704
Citation: FU Chuanbo, DAN Li, TONG Jinhe. Characteristics and source analysis of a multi-day air pollution episode in Haikou City in autumn 2017[J]. Environmental Chemistry, 2021, (4): 1048-1058. doi: 10.7524/j.issn.0254-6108.2019112704

2017年秋季海口市一次持续空气污染过程特征及成因分析

    通讯作者: 丹利, E-mail: danli@tea.ac.cn
  • 基金项目:

    国家自然科学基金(42065010,41775011),海南省自然科学基金(419MS108)和海南省气象局科研项目(HNQXXT202002)资助.

Characteristics and source analysis of a multi-day air pollution episode in Haikou City in autumn 2017

    Corresponding author: DAN Li, danli@tea.ac.cn
  • Fund Project: Supported byProject of National Natural Science Foundation of China (42065010, 41775011), Natural Science Foundation of Hainan (419MS108) and Scientific Research Project of Hainan Meteorological Bureau (HNQXXT202002).
  • 摘要: 2017年秋季海口市发生了一次罕见的持续空气污染过程.本文基于AQI和6类大气污染物浓度资料、气象观测资料、和ERA-interim再分析资料等,结合后向轨迹模式(HYSPLIT)进行深入分析.结果表明,臭氧(O3)是此次污染事件的主要污染物,污染时段AQI和O3浓度平均值分别为114 μg·m-3和175.3 μg·m-3.污染时段没有降水,气温和日照时数稳定,相对湿度偏低(68.4%),平均风速超过3.7 m·s-1,这种气象条件有利于外源污染输送和污染物浓度的维持.此次空气污染的发生与天气形势演变关系密切,低层稳定的东北风场为外源输送提供了持续的动力条件,较小的相对湿度和地表大于6℃的温度露点差为光化学烟雾的发生提供了有利条件.后向轨迹分析结果表明,不同层次上的气流轨迹运动方向基本一致,速度略有不同,同时影响气流在传输的过程中均伴有下沉和加压,限制了污染物的垂直扩散,对海口市此次O3污染的发展和维持有直接作用.潜在源区分析表明,广东是此次O3污染过程的主要贡献源区,其WPSCF值和WCWT值分别在0.21和40以上.此外湖南东南部、江西西部、江苏南部、浙江南部、福建中南部地区也有一定的潜在贡献.
  • 加载中
  • [1] 贾海鹰, 伊婷, 瞿霞, 等. 2015年北京及周边地区臭氧浓度特征及来源模拟[J]. 中国环境科学, 2017,37(4):1231-1238.

    JIA H Y, YI T, QU X, et al. Characteristics and source simulation of ozone in Beijing and its surrounding areas in 2015[J]. China Environmental Science, 2017, 37(4):1231-1238(in Chinese).

    [2] 梁永贤, 尹魁浩, 胡泳涛, 等.深圳地区臭氧污染来源的敏感性分析[J]. 中国环境科学, 2014, 34(6):1390-1396.

    LIANG Y X, YIN K H, HU Y T, et al. Sensitivity analysis of ozone precursor emission in Shenzhen, China[J]. China Environmental Science, 2014, 34(6):1390-1396(in Chinese).

    [3] BEDDOWS A V, KITWIROON N, WILLIAMS M L, et al. Emulation and sensitivity analysis of the community multiscale air quality model for a uk ozone Pollution episode[J]. Environmental Science & Technology, 2017, 51(11):6229-6236.
    [4] 程麟钧, 王帅, 宫正宇,等.中国臭氧浓度的时空变化特征及分区[J]. 中国环境科学, 2017, 37(11):4003-4012.

    CHENG L J, WANG S, GONG Z Y, et al. Spatial and seasonal variation and regionalization of ozone concentrations in China[J]. China Environmental Science, 2017, 37(11):4003-4012(in Chinese).

    [5] ZHENG J, SWALL J L, COX W M, et al. Interannual variation in meteorologically adjusted ozone levels in the eastern United States:A comparison of two approaches[J]. Atmospheric Environment, 2007, 41(4):705-716.
    [6] 冯新宇. 2013-2017年太原市臭氧浓度变化特征[J]. 环境化学, 2019, 38(8):1899-1905.

    FENG X Y. Variation characteristics of ozone concentration in Taiyuan from 2013 to 2017[J]. Environmental Chemistry, 2019, 38(8):1899-1905(in Chinese).

    [7] ANENERG S C, HOROWITZ L W, TONG D Q, et al. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling[J]. Environmental Health Perspectives. 2010, 118(9):1189-1195.
    [8] LIU H, LIU S, XUE B R, et al. Ground-level ozone pollution and its health impacts in China[J]. Atmospheric Environment, 2018, 173:223-230.
    [9] CROZE M, ZIMMER L, LEE H. Ozone atmospheric pollution and alzheimer's disease:From epidemiological facts to molecular mechanisms[J]. Journal of Alzheimer's Disease, 2018, 62(2):503-522.
    [10] FUHRER J. Ozone risk for crops and pastures in present and future climates[J]. Die Naturwissenschaften, 2009, 96(2):173-94.
    [11] 耿春梅, 王宗爽, 任丽红,等.大气臭氧浓度升高对农作物产量的影响[J]. 环境科学研究, 2014, 27(3):239-245.

    GENG C M, WANG Z S, REN L H, et al. Study on the impact of elevated atmospheric ozone on crop yield[J]. Research of Environmental Sciences, 2014, 27(3):239-245(in Chinese).

    [12] IPCC. Climate Change Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. IPCC, Geneva, Switzerland:2014, 151.
    [13] 刘建, 吴兑,范绍佳, 等.前体物与气象因子对珠江三角洲臭氧污染的影响[J]. 中国环境科学, 2017, 37(3):813-820.

    LIU J, WU J, FAN S J, et al. Impacts of precursors and meteorological factors on ozone pollution in Pearl River Delta[J]. China Environmental Science, 2017, 37(3):813-820(in Chinese).

    [14] 张祥志, 陈文泰,黄樱, 等.江苏省2013-2016年臭氧时空分布特征[J]. 中国环境监测, 2017, 33(4):50-59.

    ZHANG X Z, CHEN W T, HUANG Y, et al. Temporal and spatial distribution characteristics of ozone in Jiangsu Province during 2013-2016[J]. Environmental Monitoring in China, 2017, 33(4):50-59(in Chinese).

    [15] LI G H, BEI N F, CAO J J, et al. Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015:Observations and source attributions[J]. Atmospheric Chemistry and Physics, 2017, 17(4):2759-2774.
    [16] WANG Y Y, DU H Y, XU Y Q, et al. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China[J]. Science of The Total Environment, 2018, 631-632:921-933.
    [17] 王燕丽, 薛文博, 雷宇, 等.京津冀地区典型月O3污染输送特征[J]. 中国环境科学, 2017, 37(10):86-93.

    WANG Y L, XUE W B, LEI Y, et al. Model-derived source apportionment and regional transport matrix study on zone in Jingjinji[J]. China Environmental Science, 2017, 37(10):86-93(in Chinese).

    [18] 何涛, 乔利平, 徐圃青, 等.常州市臭氧污染传输路径和潜在源区[J]. 中国环境监测, 2017, 33(4):77-83.

    HE T, QIAO L P, XU P Q, et al. Study of transport pathways and potential sources of ozone pollution in Changzhou[J]. Environmental Monitoring in China, 2017, 33(4):77-83(in Chinese).

    [19] TAN Z F, LU K D, JIANG M Q, et al. Exploring ozone pollution in Chengdu, southwestern China:A case study from radical chemistry to O3-VOC-NOx sensitivity[J]. Science of The Total Environment, 2018, 636:775-786.
    [20] 苏榕, 陆克定, 余家燕, 等.基于观测模型的重庆大气臭氧污染成因与来源解析[J]. 中国科学:地球科学, 2018, 48(1):102-112.

    SU R, LU K D, YU J Y, et al. Exploration of the formation mechanism and source attribution of ambient ozone in Chongqing with an observation-based model[J]. Science China Earth Sciences, 2018, 48(1):102-112(in Chinese).

    [21] 王俏丽, 董敏丽, 李素静, 等.舟山市臭氧污染分布特征及来源解析[J]. 环境科学, 2019, 40(3):1143-1151.

    WANG Q L, DONG M L, LI S J, et al. Characteristics of ozone pollution distribution and source apportionment in Zhoushan[J]. Environmental Science, 2019, 40(3):1143-1152(in Chinese).

    [22] 马晓丹, 赵天良, 胡俊, 等.南京地区一次臭氧污染过程的行业排放贡献研究[J]. 环境科学学报, 2019, 39(1):105-115.

    MA X D, ZHAO T L, HU J, et al. Modeling study on emission contribution to an ozone pollution episode in Nanjing[J]. Acta Scientiae Circumstantiae, 2019, 39(1):105-115(in Chinese).

    [23] 王凡, 王咏薇, 高嵩, 等. 湖陆风环流对于臭氧高浓度事件影响的模拟分析[J]. 环境科学学报, 2019, 39(5):1392-1401.

    WANG F, WANG Y W, GAO S, et al. Simulation analysis of the influence of lake-land breeze circulation on high ozone concentration events[J]. Acta Scientiae Circumstantiae, 2019, 39(5):1392-1401(in Chinese).

    [24] 符传博, 陈有龙, 丹利, 等.近10年海南岛大气NO2的时空变化及污染物来源解析[J]. 环境科学, 2015, 36(1):18-24.

    FU C B, CHEN Y L, DAN L, et al. Temporal and spatial characteristics of atmospheric NO2 over Hainan Island and the pollutant sources in recent 10 years[J]. Environmental Science, 2015, 37(9):18-24(in Chinese).

    [25] 符传博,唐家翔,丹利,等.2014年海口市大气污染物演变特征及典型污染个例分析[J].环境科学学报,2016, 36(6):2160-2169.

    FU C B, TANG J X, DAN L, et al. Evolution of ambient air quality and case study of an air pollution event in 2014 over Haikou, China[J]. Acta Scientiae Circumstantiae, 2016, 36(6):2160-2169(in Chinese).

    [26] 赵恒, 王体健, 江飞, 等.利用后向轨迹模式研究TRACE-P期间香港大气污染物的来源[J]. 热带气象学报, 2009, 25(2):181-186.

    ZHAO H, WANG T J, JIANG F, et al. Investigation into the source of air pollutions to Hong Kong by using backward trajectory method during the TRACE-P campaign[J]. Journal of Tropical Meteorology, 2009, 25(2):181-186(in Chinese).

    [27] WANG Y Q, STEIN A F, DRAXLER R R, et al. Global sand and dust storms in 2008:Observation and HYSPLIT model verification[J]. Atmospheric Environment, 2011, 45:6368-6381.
    [28] 杜朋, 李德平, 刘建国,等. APCE前后北京郊区大气颗粒物变化特征及其潜在源区分析[J]. 环境科学学报, 2018, 38(10):3846-3855.

    DU P, LI D P, LIU J G, et al. Pollution characteristics and potential source region analysis of atmospheric particulate matter during 2014 APEC in Beijing surburban[J]. Acta Scientiae Circumstantiae, 2018, 38(10):3846-3855(in Chinese).

    [29] WANG L L, LI W J, SUN Y, et al. PM2.5 Characteristics and regional transport contribution in five cities in Southern North China Plain, During 2013-2015[J]. Atmosphere, 2018, 9(4):157-177.
    [30] FERHAT K, ISMAIL A, OMAR A et al. Long-range potential source contributions of episodic aerosol events to PM10 profile of a megacity[J]. Atmospheric Environment, 2009, 43(36):5713-5722.
    [31] 周沙, 刘宁, 刘朝顺. 2013-2015年上海市霾污染事件潜在源区贡献分析[J]. 环境科学学报, 2017, 37(5):1835-1842.

    ZHOU S, LIU N, LIU C S, et al. Identification for potential sources for haze events in Shanghai from 2013 to 2015[J]. Acta Scientiae Circumstantiae, 2017, 37(5):1835-1842(in Chinese).

    [32] 李莉, 蔡鋆琳, 周敏. 2013年12月中国中东部地区严重灰霾期间上海市颗粒物的输送途径及潜在源区贡献分析[J]. 环境科学, 2015, 36(7):2327-2336.

    LI L, CAO J L, ZHOU M. Potential source contribution analysis of the particulate matters in Shanghai during the heavy haze episode in eastern and middle China in December, 2013[J]. Environmental Science, 2015, 36(7):2327-2336(in Chinese).

    [33] 吴锴, 康平, 王占山, 等.成都市臭氧污染特征及气象成因研究[J]. 环境科学学报, 2017, 37(11):4241-4252.

    WU K, KANG P, WANG Z S, et al. Ozone temporal variation and its meteorological factors over Chengdu City[J]. Acta Scientiae Circumstantiae, 2017, 37(11):4241-4252(in Chinese).

    [34] 李崇,袁子鹏,吴宇童,等.沈阳一次严重污染天气过程持续和增强气象条件分析[J]. 环境科学研究,2017, 30(3):349-358.

    LI C, YUAN Z P, WU Y T, et al. Analysis of persistence and intensification mechanism of a heavy haze event in Shenyang[J]. Research of Environmental Sciences, 2017, 30(3):349-358(in Chinese).

    [35] 严茹莎, 陈敏东, 高庆先, 等.北京夏季典型臭氧污染分布特征及影响因子[J]. 环境科学研究, 2013, 26(1):43-49.

    YAN R S, CHEN M D, GAO Q X, et al. Characteristics of typical ozone pollution distribution and impact factors in Beijing in summer[J]. Research of Environmental Sciences, 2013, 26(1):43-49(in Chinese).

    [36] 文雯, 李国平, 谢娜, 等. 2015年成都市空气质量指数特征及其与大气水汽的关系[J]. 沙漠与绿洲气象, 2019, 13(1):23-30.

    WEN W, LI G P, XIE N, et al. Characteristics of Chengdu air quality index and its relationship with atmospheric water vapor in 2015[J]. Desert and Oasis Meteorology, 2019, 13(1):23-30(in Chinese).

    [37] SARAH C K, JENNIFER G M. Understanding ozone-meteorology correlations:A role for dry deposition[J]. Geophysical Research Letters, 2017, 44:1-10.
    [38] 姚青,孙玫玲, 刘爱霞.天津臭氧浓度与气象因素的相关性及其预测方法[J]. 生态环境学报, 2009, 18(6):2206-2210.

    YAO Q, SUN M L, LIU A X. Analysis and prediction of surface ozone concentration and related meteorological factors in summer in Tianjin[J]. Ecology and Environmental Sciences, 2009, 18(6):2206-2210(in Chinese).

    [39] 涂小萍, 姚日升, 高爱臻, 等.浙江北部一次爆发式发展重度大气污染的气象特点和成因[J]. 环境科学学报, 2019, 39(5):1443-1451.

    TU X P, YAO R S, GAO A Z, et al. Meteorological characteristics and outbreak causes of a heavy air pollution episode in northern Zhejiang Province[J]. Acta Scientiae Circumstantiae, 2019, 39(5):1443-1451(in Chinese).

    [40] 卢文,王红磊,朱彬,等.南京江北2014-2016年PM2.5质量浓度分布特征及气象和传输影响因素分析[J]. 环境科学学报, 2019, 39(4):1039-1048.

    LU W, WANG H L, ZHU B, et al. Distribution characteristics of PM2.5 mass concentration and their impacting factors including meteorology and transmission in North Suburb of Nanjing during 2014 to 2016[J]. Acta Scientiae Circumstantiae, 2019, 39(4):1039-1048(in Chinese).

  • 加载中
计量
  • 文章访问数:  1634
  • HTML全文浏览数:  1634
  • PDF下载数:  47
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-27

2017年秋季海口市一次持续空气污染过程特征及成因分析

    通讯作者: 丹利, E-mail: danli@tea.ac.cn
  • 1. 海南省气象科学研究所, 海口, 570203;
  • 2. 中国科学院东亚区域气候-环境重点实验室, 中国科学院大气物理研究所, 北京, 100029;
  • 3. 海南省南海气象防灾减灾重点实验室, 海口, 570203
基金项目:

国家自然科学基金(42065010,41775011),海南省自然科学基金(419MS108)和海南省气象局科研项目(HNQXXT202002)资助.

摘要: 2017年秋季海口市发生了一次罕见的持续空气污染过程.本文基于AQI和6类大气污染物浓度资料、气象观测资料、和ERA-interim再分析资料等,结合后向轨迹模式(HYSPLIT)进行深入分析.结果表明,臭氧(O3)是此次污染事件的主要污染物,污染时段AQI和O3浓度平均值分别为114 μg·m-3和175.3 μg·m-3.污染时段没有降水,气温和日照时数稳定,相对湿度偏低(68.4%),平均风速超过3.7 m·s-1,这种气象条件有利于外源污染输送和污染物浓度的维持.此次空气污染的发生与天气形势演变关系密切,低层稳定的东北风场为外源输送提供了持续的动力条件,较小的相对湿度和地表大于6℃的温度露点差为光化学烟雾的发生提供了有利条件.后向轨迹分析结果表明,不同层次上的气流轨迹运动方向基本一致,速度略有不同,同时影响气流在传输的过程中均伴有下沉和加压,限制了污染物的垂直扩散,对海口市此次O3污染的发展和维持有直接作用.潜在源区分析表明,广东是此次O3污染过程的主要贡献源区,其WPSCF值和WCWT值分别在0.21和40以上.此外湖南东南部、江西西部、江苏南部、浙江南部、福建中南部地区也有一定的潜在贡献.

English Abstract

参考文献 (40)

目录

/

返回文章
返回