-
砷元素是一种有毒类金属,由于人类活动和地质活动,如采矿和冶金作业、木材处理、添加剂和化肥的应用、钢铁工业、煤炭生产、风化的基岩溶解反应、火山活动和含水层的过度开采等,砷可被引入环境,通过口腔接触、皮肤接触、呼吸等进入人体[1-3]。含砷尾渣大多是在有色金属冶炼过程中产生的,是一种通常储存在尾矿库中的有害固体废物[4-5]。砷硫化物矿物的氧化会导致砷离子的析出[6]。铜冶炼炉渣选矿后产生的矿浆自然脱水后形成尾渣这类固体矿物废料,在堆放过程中不仅会占用大量场地,其中矿物氧化释放出来的砷离子可通过离子交换进入土壤和地表水中,因此尾渣堆积带来的环境问题不容忽视[7]。
近年来国内外许多学者对尾矿渣中砷所产生的环境污染问题进行了多方面的研究。朱翔宇等[8]利用多种表征手段系统分析安徽铜陵杨山冲尾矿中砷的赋存形式,发现砷以As(Ⅲ)和As(Ⅴ)的形式赋存于风化较弱的下部尾矿中,而强烈风化的表层尾矿中只存在As(Ⅴ);Kohfahl等[9]通过对芬兰Haveri Au铜矿尾矿在表生条件下淋滤过程的系统研究,探讨出尾矿中砷元素对周边生态环境的影响及潜在威胁,同时在环境治理及尾矿渣综合利用等方面取得一定研究成果;温其谦等[10]应用矿物学和化学分析方法发现半壁山金矿矿业周边的矿石、底泥、土壤中均存在含砷矿物——毒砂,且砷主要分布在道路两旁或村民聚集地的农田耕层土壤中。研究区有色金属冶炼中铜炉渣产出铜精矿后再回炉重炼产出尾渣,尾渣一天产量为3500—3600 t,呈粒砂状,黑灰色,有湿度,主要采用室内堆放,通常外售参与水泥矿浆和混凝土的制备。
为研究含砷尾渣对周围环境带来的潜在危害性,本文以安徽某有色金属冶炼厂中冶炼炉渣选矿后排放的尾渣矿浆为研究对象,应用SEM、XRF、XRD和XPS等表征手段相结合的方法,从该尾渣元素组成研究入手,通过形态提取深入了解尾渣中砷的精细化学结构及赋存形态,进而为后续尾渣中砷的风险评价及资源化利用提供理论依据。
尾渣中砷的精细化学结构、赋存形态
The fine chemical structure and occurrence patterns of arsenic in tailings
-
摘要: 本文以安徽某有色金属冶炼厂排放的尾渣为研究对象,利用扫描电镜(SEM)、X射线衍射仪(XRD)、X射线荧光光谱分析仪(XRF)和X射线光电子能谱仪(XPS)等方法对尾渣中As的精细结构进行分析,并结合Tessier提取法研究As在尾渣中的赋存形态。结果表明,尾渣中As主要与O共生以As(Ⅴ)-O金属砷酸盐形式存在,含砷矿物为砷酸铁FeAsO4和拉砷铜石Cu(AsO4)2,伴有少量砷酸铝和硫化砷;总砷含量范围为0.11%—0.17%,赋存形态以残渣态为主,占90%—95%,不同形态As含量大小依次为残渣态>Fe-Mn氧化态>碳酸盐结合态>可交换态>有机结合态;pH是影响As迁移转化的重要因素之一,在环境中会积累一定水平的潜在As释放风险。Abstract: In this study, the tailings around Nonferrous Metals Smelter in Anhui Province was the main research object. The fine chemical structure of arsenic in tailings were analyzed by using multiple analytical technologies such as scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF) and X-ray photoelectron spectroscopy (XPS) and the occurrence patterns of arsenic in tailings were discussed by sequential extraction method (Tessier). The results indicated that arsenic in the tailings was mainly symbiosis with O and exists in the form of As(Ⅴ)-O arsenate. The arsenic-containing minerals were Iron arsenate (FeAsO4) and Lammerite (Cu(AsO4)2), accompanied by a small amount of aluminum arsenate and arsenic sulfide. The content of total arsenic ranged from 0.11% to 0.17%, and the occurrence patterns of arsenic were mainly in the residual fraction, accounting for 90% to 95%. The content of arsenic in different fractions followed the order of residual>Fe-Mn oxide>carbonate>exchangeable>organic. pH was one of the important factors influencing the migration and transformation of arsenic, and there might be an accumulation of potential release risk in the environment.
-
Key words:
- tailings /
- arsenic /
- chemical structure /
- occurrence patterns
-
表 1 尾渣pH、Eh、EC及TAs含量
Table 1. The pH, Eh, EC and total arsenic content in tailings
堆放天数
Storage days采样高度
Height of
sampling/m样品编号
Sample
numberpH Eh/ mV EC/(mS·cm−1) 含水率/%
The moisture
content总砷含量/(mg·kg−1)
Total arsenic
content5 d 1.5 W1 7.97 −12 2.298 0.76 1187 3 W2 8.07 −17 1.824 0.65 1467 0 W3 8.13 −21 1.724 0.68 1297 混合 W4 8.08 −18 1.906 0.50 1345 10 d 3 W5 8 −13 2.042 0.29 1675 1.5 W6 8.06 −16 2.236 0.66 1381 0 W7 8.28 −30 2.538 0.54 1131 混合 W8 8.17 −23 2.662 0.72 1688 表 2 尾渣XRF化学组成定量分析
Table 2. Quantitative analysis of XRF element composition in tailings
元素 Element Cu O S Fe As Si Zn 质量分数/% Mass fraction 0.34 19.4 0.17 51.32 0.17 18.08 1.74 元素 Element K Pb Al Ca Na Mg Mo 质量分数/% Mass fraction 1.44 0.25 2.39 2.37 0.63 0.98 0.28 元素 Element Ni Ti P Cr Mn Sr 质量分数/% Mass fraction 0.041 0.209 0.038 0.064 0.07 0.016 表 3 As及pH、Eh、其他元素相关性分析
Table 3. Correlation analysis of As, pH, Eh and other elements
pH Eh Zn Fe Cu Al S As pH 1 Eh −0.998** 1 Zn 0.150 −0.156 1 Fe 0.207 −0.227 0.929** 1 Cu 0.158 −0.181 0.921** 0.996** 1 Al −0.248 0.247 0.481 0.188 0.224 1 S 0.160 −0.180 0.908** 0.888** 0.912** 0.502 1 As −0.223 0.262 −0.073 −0.325 −0.317 0.389 −0.006 1 注:**P<0.01,*P<0.05. -
[1] 赵立君, 刘云根, 王妍, 等. 砷污染湖滨湿地底泥微生物群落结构及多样性 [J]. 中国环境科学, 2019, 39(9): 3933-3940. doi: 10.3969/j.issn.1000-6923.2019.09.040 ZHAO L J, LIU Y G, WANG Y, et al. Microbial community structure and diversity of arsenic-contaminated lakeshore wetland sediments [J]. China Environmental Science, 2019, 39(9): 3933-3940(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.09.040
[2] WANG S, MULLIGAN C N. Arsenic mobilization from mine tailings in the presence of a biosurfactant [J]. Applied Geochemistry, 2009, 24(5): 928-935. doi: 10.1016/j.apgeochem.2009.02.017 [3] LEE P K, YU S Y, JEONG Y J, et al. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea [J]. Chemosphere, 2019, 217: 183-194. doi: 10.1016/j.chemosphere.2018.11.010 [4] RAKOTONIMARO T V, GUITTONNY M, NECULITA C M, et al. Evaluation of arsenic leaching potential in gold mine tailings amended with peat and mine drainage treatment sludge [J]. Journal of Environmental Quality, 2019, 48(3): 735-745. doi: 10.2134/jeq2018.11.0392 [5] KIVENTERA J, SREENIVASAN H, CHEESEMAN C, et al. Immobilization of sulfates and heavy metals in gold mine tailings by sodium silicate and hydrated lime [J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6530-6536. doi: 10.1016/j.jece.2018.10.012 [6] 张复新, 马建秦, 陈衍景. 秦岭卡林型金矿床金、砷地球化学探讨 [J]. 地球化学, 1999, 28(5): 453-463. doi: 10.3321/j.issn:0379-1726.1999.05.005 ZHANG F X, MA J Q, CHEN Y J. The study on geochemistry of gold and arsenic mineralization in Carlin type gold deposits, Qinling region [J]. Geochimica, 1999, 28(5): 453-463(in Chinese). doi: 10.3321/j.issn:0379-1726.1999.05.005
[7] 邱征, 郑刘根, 夏毅民. 安徽铜陵水木冲尾矿重金属赋存状态及污染特征研究 [J]. 岩石矿物学杂志, 2018, 37(6): 127-135. QIU Z, ZHENG L G, XIA Y M. A study of modes of occurrence and pollution characteristics of heavy metals in Shuimuchong tailings of Tongling, Anhui province [J]. Acta Petrologica Et Mineralogica, 2018, 37(6): 127-135(in Chinese).
[8] 朱翔宇, 王汝成, 陆现彩, 等. 安徽铜陵杨山冲浅层富硫化物尾矿中砷的赋存状态 [J]. 岩石矿物学杂志, 2013, 32(6): 918-924. doi: 10.3969/j.issn.1000-6524.2013.06.023 ZHU X Y, WANG N C, LU X C, et al. Modes of occurrence of arsenic in surface sulfide-rich tailings of Yangshanchong, Tongling, Anhui Province [J]. Acta Petrologica Et Mineralogica, 2013, 32(6): 918-924(in Chinese). doi: 10.3969/j.issn.1000-6524.2013.06.023
[9] KOHFAHL C, GRAUPNER T, FETZER C, et al. The impact of hardpans and cemented layers on oxygen diffusivity in mining waste heaps: Diffusion experiments and modelling studies [J]. Science of the Total Environment, 2011, 409(17): 3197-3205. doi: 10.1016/j.scitotenv.2011.04.055 [10] 温其谦, 阎秀兰, 申俊峰, 等. 半壁山金矿矿业活动区砷赋存的矿物特征及其对农田土壤砷累积的影响 [J]. 环境科学, 2019, 40(11): 5090-5097. WEN Q Q, YAN X L, SHEN J F, et al. Mineral characteristics of arsenic in the active area of the Banbishan gold mine and its effect on arsenic accumulation in farmland soil [J]. Environmental Science, 2019, 40(11): 5090-5097(in Chinese).
[11] 黄文明, 吴才来, 高栋, 等. 安徽铜陵沙滩脚矿田中酸性侵入岩成因及构造意义 [J]. 中国地质, 2019, 46(4): 861-877. doi: 10.12029/gc20190416 HUANG W M, WU C L, GAO D, et al. Petrogenesis and tectonic implications of the intermediate-acid plutons in Shatanjiao ore-field, Tongling, Anhui [J]. Geologyin China, 2019, 46(4): 861-877(in Chinese). doi: 10.12029/gc20190416
[12] 宁思远, 汪方跃, 薛维栋, 等. 长江中下游铜陵地区宝山岩体地球化学研究 [J]. 地球化学, 2017, 46(5): 397-412. doi: 10.3969/j.issn.0379-1726.2017.05.001 NING S Y, WANG F Y, XUE W D, et al. Geochemistry of the Baoshan pluton in the Tongling region of the Lower Yangtze River Belt [J]. Geochimica, 2017, 46(5): 397-412(in Chinese). doi: 10.3969/j.issn.0379-1726.2017.05.001
[13] 张红, 刘桂建, 梅建鸣, 等. 铜陵市空气污染物浓度日变化特征的观测分析 [J]. 中国科学技术大学学报, 2014, 44(8): 679-688. doi: 10.3969/j.issn.0253-2778.2014.08.008 ZHANG H, LIU G J, MEI J M, et al. Observation study on concentration diurnal variation of atmospheric pollutants in Tongling City [J]. Journal of University of Science and Technology of China, 2014, 44(8): 679-688(in Chinese). doi: 10.3969/j.issn.0253-2778.2014.08.008
[14] WANG S, MULLIGAN C N. Effect of natural organic matter on arsenic mobilization from mine tailings [J]. Journal of Hazardous Materials, 2009, 168(2/3): 721-726. doi: 10.1016/j.jhazmat.2009.02.088 [15] LI C, BAI S, DING Z, et al. Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96: 53-62. doi: 10.1016/j.jtice.2018.11.021 [16] 冯卫卫, 罗锡明, 刘丹丹. 寨上金矿矿区河流沉积物中砷的形态分析 [J]. 生态环境学报, 2011, 20(4): 659-662. doi: 10.3969/j.issn.1674-5906.2011.04.012 FENG W W, LUO X M, LIU D D. Speciation of arsenic in sediment of the river around Zhaishang goldmine [J]. Ecology and Environmental Sciences, 2011, 20(4): 659-662(in Chinese). doi: 10.3969/j.issn.1674-5906.2011.04.012
[17] 陈寻峰, 李小明, 陈灿, 等. 砷污染土壤复合淋洗修复技术研究 [J]. 环境科学, 2016, 37(3): 1147-1155. CHEN X F, LI X M, CHEN C, et al. Mixture leaching remediation technology of arsenic contaminated soil [J]. Environmental Science, 2016, 37(3): 1147-1155(in Chinese).
[18] FAN L, ZHAO F, LIU J, et al. Dissolution of realgar by Acidithiobacillus ferrooxidans in the presence and absence of zerovalent iron: Implications for remediation of iron-deficient realgar tailings [J]. Chemosphere, 2018, 209: 381-391. doi: 10.1016/j.chemosphere.2018.05.192 [19] LONG G, PENG Y, BRADSHAW D. A review of copper–arsenic mineral removal from copper concentrates [J]. Minerals Engineering, 2012, 36/38: 179-186. doi: 10.1016/j.mineng.2012.03.032 [20] 赵永红, 张静, 曹鑫康, 等. 钨矿区尾矿及周围土壤中砷的形态与释放特征研究 [J]. 安全与环境学报, 2014, 14(4): 271-275. ZHAO Y H, ZHANG J, CAO X K, et al. In-situ status and releasing characteristics of the arsenic presence in the tailings of the tungsten mining area and its surrounding soils [J]. Journal of Safety and Environment, 2014, 14(4): 271-275(in Chinese).
[21] XU W, WANG H, LIU R, et al. Arsenic release from arsenic-bearing Fe–Mn binary oxide: Effects of Eh condition [J]. Chemosphere, 2011, 83(7): 1020-1027. doi: 10.1016/j.chemosphere.2011.01.066 [22] MA J, LEI M, WENG L, et al. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution [J]. Chemosphere, 2019, 227: 614-623. doi: 10.1016/j.chemosphere.2019.04.030 [23] WANG S, MULLIGAN C N. Speciation and surface structure of inorganic arsenic in solid phases: A review [J]. Environment International, 2008, 34(6): 867-879. doi: 10.1016/j.envint.2007.11.005 [24] BAEK K, KIM D H, PARK S W, et al. Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing [J]. Journal of Hazardous Materials, 2009, 161(1): 457-462. doi: 10.1016/j.jhazmat.2008.03.127 [25] WANG X, ZHANG H, WANG L, et al. Transformation of arsenic during realgar tailings stabilization using ferrous sulfate in a pilot-scale treatment [J]. Science of the Total Environment, 2019, 668: 32-39. doi: 10.1016/j.scitotenv.2019.02.289 [26] SASAKI K, TAKATSUGI K, ISHIKURA K, et al. Spectroscopic study on oxidative dissolution of chalcopyrite, enargite and tennantite at different pH values [J]. Hydrometallurgy, 2010, 100(3/4): 144-151. doi: 10.1016/j.hydromet.2009.11.007 [27] 柏建坤, 李潮流, 康世昌, 等. 雅鲁藏布江中段表层沉积物重金属形态分布及风险评价 [J]. 环境科学, 2014, 35(9): 3346-3351. BAI J K, LI C L, KANG S C, et al. Chemical speciation and risk assessment of heavy metals in themiddle part of Yarlung Zangbo surface sediments [J]. Environmental Science, 2014, 35(9): 3346-3351(in Chinese).
[28] PARVIAINEN A, ISOSAARI P, LOUKOLA-RUSKEENIEMI K, et al. Occurrence and mobility of As in the Ylöjärvi Cu–W–As mine tailings [J]. Journal of Geochemical Exploration, 2012, 114: 36-45. doi: 10.1016/j.gexplo.2011.12.002 [29] 孙厚云, 吴丁丁, 毛启贵, 等. 新疆东天山某铜矿区土壤重金属污染与生态风险评价 [J]. 环境化学, 2019, 38(12): 2690-2699. SUN H Y, WU D D, MAO G Q, et al. Soil heavy metal pollution and ecological risk assessment in a copper mining area in East Tianshan, Xinjiang [J]. Environmental Chemistry, 2019, 38(12): 2690-2699(in Chinese).
[30] 杜颖, 刘祖鹏, 董冕, 等. 含砷石膏中砷的形态及酸浸出分析 [J]. 环境工程学报, 2017, 11(10): 5691-5695. doi: 10.12030/j.cjee.201611132 DU Y, LIU Z P, DONG M, et al. Speciation and acid leach ability of As from gypsum with arsenic [J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5691-5695(in Chinese). doi: 10.12030/j.cjee.201611132