-
生物质燃烧是我国华北区域秋冬季大气颗粒物污染的重要来源之一,燃烧过程中释放大量的CO、CO2、CH4、VOCs等气体和有机碳成分为主的气溶胶颗粒物,对局地和区域空气质量以及人体健康具有重要的影响[1-2]。据模式估算,由生物质燃烧排放的气溶胶约占全球一次有机碳的90%[3]。虽然2013年国务院颁布了“大气十条”治理空气污染,严格禁止秸杆露天焚烧,但是由于生物质锅炉、家用取暖等人为活动,导致生物质燃烧依然是我国大气颗粒物的重要来源[4-5],且近年来我国频发的重霾污染与生物质燃烧也密切相关[6]。
糖类化合物是大气颗粒物中广泛存在的有机物质[7],其中以左旋葡聚糖为代表的脱水糖(左旋葡聚糖、甘露聚糖、半乳聚糖)是含量最高的组分[8-9],左旋葡聚糖由于性质稳定且为纤维素在高温燃烧时产生,常被用作生物质燃烧的示踪物[10-11],生物质燃烧同时还释放少量的甘露聚糖和半乳聚糖[7]。大量的研究表明,在生物质燃烧较多的秋冬季,左旋葡聚糖的浓度显著高于其他两个季节[10]。其他糖类如葡萄糖主要通过植物的光合作用产生,多由植物的呼吸作用进入大气[12];阿拉伯糖醇和山梨醇和纤维醇主要来源于真菌和孢子的排放,常在源解析中用作真菌孢子排放的示踪物[13-14]。
石家庄市是京津冀地区重要工业城市,进入秋冬季节,灰霾污染频繁发生。姜建彪等[15]研究表明,石家庄市大气颗粒物中碳质组分浓度非常高,而糖类化合物在碳质组分中占有很大比例。因此,深入研究大气细粒子中糖类化合物的化学组成和来源,对控制石家庄市大气细粒子污染、减少灰霾污染的发生具有重要的意义。
石家庄市秋冬季大气细粒子中糖类化合物的组成和来源
Studies on the composition and source of saccharides in autumn and winter PM2.5 in Shijiazhuang
-
摘要: 糖类化合物是大气颗粒物的重要组成部分,对局地甚至是全球气候变化有着重要的影响。本研究利用中流量颗粒物采样器分别于2016年9月18日—10月17日(秋季)和2016年12月15日—2017年1月13日(冬季)对石家庄市大气PM2.5样品进行了昼夜采集,并利用气相色谱质谱联用仪分析了样品中的10种糖类化合物,包括脱水糖、糖和糖醇。结果表明,石家庄市大气PM2.5中的糖类物质在秋冬季平均总浓度分别为(629.57±446.05 )ng·m−3和(950.45±821.63) ng·m−3,浓度变化范围是57.01—2411.5 ng·m−3。其中脱水糖类(包括左旋葡聚糖、半乳聚糖和甘露聚糖),冬季浓度要明显高于秋季,其主要来源于生物质燃烧,是秋冬季最主要的糖类物质,分别占糖类总浓度的87.4%(秋季)和91.9%(冬季);左旋葡聚糖/甘露聚糖(L/M)比值表明,石家庄市秋季以作物残渣为主要的生物质燃烧类型,而冬季以硬木为主要的生物质燃烧类型。单糖和二糖浓度变化趋势一致,均为秋季明显高于冬季,秋季白天高于夜间,冬季白天低于夜间。阿拉伯糖醇、山梨醇、纤维醇主要来源于真菌和孢子的排放,秋季浓度略高于冬季。PMF源解析结果表明,生物质燃烧(83%),真菌孢子排放(3%),花粉(3%)及土壤再悬浮(11%)是石家庄市大气细粒子中糖类物质的重要来源。Abstract: Saccharides are significant components of atmospheric particulate matter, and have an important impact on local and even global climate change. In this study, medium flow sampler was used to collect samples on diurnal/nocturnal basis in Shijiazhuang from September 18, 2016 to October 17, 2016 (autumn) and December 15, 2016 to January 13, 2017 (winter). 12 saccharides including dehydrated sugars, sugars, and sugar alcohols were detected using gas chromatography-mass spectrometry (GC-MS). The results showed that the average total concentrations of saccharides in the atmospheric PM2.5 in Shijiazhuang in autumn and winter were (629.57±446.05) ng·m−3 and (950.45±821.63) ng·m−3, ranging from 57.01 ng·m−3 to 2411.5 ng·m−3. Dehydrated saccharides (including levoglucosan, galactosan and mannosan) which mainly come from biomass combustion, were the most important saccharides, accounting for 87.4% (autumn) and 91.9% (winter) of the total detected saccharides. The ratio of Levoglucosan/mannosan (L/M) indicated that crop residues were the main burning type in autumn and hardwood was the main burning type in winter in shijiazhuang. Sucrose and trehalose were typical disaccharides which mainly derive from soil resuspension. The monosaccharide and disaccharide concentrations have the same change trend, both of which were significantly higher in autumn than in winter, autumn daytime was higher than nighttime, and winter daytime was lower than nighttime. Arabinol, sorbitol, and fibronol were common sugar alcohols, which mainly come from fungus and spore. The concentration of those sugar alcohols showed slightly higher level than that in winter. The results of PMF source analysis showed that biomass combustion (83%), fungal spore discharge (3%), pollen (3%) and soil re-suspension (11%) were important sources of detected saccharides in Shijiazhuang.
-
Key words:
- atmospheric fine particles /
- saccharides /
- Shijiazhuang /
- sources
-
表 1 糖类硅烷化混合物的特征离子及定量离子
Table 1. Characteristic and quantitative ions of saccharides (derivatized by TMCs)
名称Name 分子式 Molecular formula 特征离子Qualitative ions 定量离子Quantitative ion Galactan C15H34O5Si3 73,147,204,217,333 217 Mannosan C15H34O5Si3 73,147,204,217,333 217 13C-Levoglucosan C15H34O5Si3 73,147,206,220,338 220 Levoglucosan C15H34O5Si3 73,147,204,217,333 217 Arabitol C20H52O5Si5 73,103,147,217,307 217 α-Fructose C21H52O6Si5 73,147,191,204,217 217 β-Fructose C21H52O6Si5 73,147,191,204,217 217 α-Glucose C21H52O6Si5 73,147,191,204,217 217 β-Glucose C21H52O6Si5 73,147,191,204,217 217 Sorbitol C24H62O6Si6 73,147,205,217,319 217 Inositol C24H62O6Si6 73,147,217,305,318 217 Sucrose C33H78O11Si7 73,147,191,217,361 217 Trehalose C33H78O11Si7 73,147,191,217,361 217 -
[1] SIMONEIT B R T. Biomass burning - A review of organic tracers for smoke from incomplete combustion [J]. Appl Geochem, 2002, 17(3): 129-162. doi: 10.1016/S0883-2927(01)00061-0 [2] ZHAO H M, ZHANG X L, ZHANG S C, et al. Effects of agricultural biomass burning on regional haze in China: A review [J]. Atmosphere-Basel, 2017, 8(5): 88-97. [3] ITO A, PENNER J E. Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000 [J]. Global Biogeochem Cycles, 2005, 19(2): 1-14. [4] CHENG Y, ENGLING G, HE K B, et al. The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks [J]. Environ Pollut, 2014, 185: 149-157. doi: 10.1016/j.envpol.2013.10.037 [5] 高雅琴, 王红丽, 景盛翱, 等. 上海夏季PM2.5中有机物的组分特征、空间分布和来源 [J]. 环境科学, 2018, 39(5): 1978-1986. GAO Y Q, WANG H L, JING S A, et al. Chemical characterization, spatial distribution, and source identification of organic matter in PM2.5 in summertime Shanghai, China [J]. Environmental Science, 2018, 39(5): 1978-1986(in Chinese).
[6] CHEN J M, LI C L, RISTOVSKI Z, et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China [J]. Sci Total Environ, 2017, 579: 1000-1034. doi: 10.1016/j.scitotenv.2016.11.025 [7] SCARAMBONI C, URBAN R C, LIMA-SOUZA M, et al. Total sugars in atmospheric aerosols: An alternative tracer for biomass burning [J]. Atmospheric Environment, 2015, 100: 185-192. doi: 10.1016/j.atmosenv.2014.11.003 [8] ZHANG T, CLAEYS M, CACHIER H, et al. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker [J]. Atmospheric Environment, 2008, 42(29): 7013-7021. doi: 10.1016/j.atmosenv.2008.04.050 [9] SIMONEIT B R T, SCHAUER J J, NOLTE C G, et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles [J]. Atmospheric Environment, 1999, 33(2): 173-182. doi: 10.1016/S1352-2310(98)00145-9 [10] LI X R, WEN T X, XIN J Y, et al. Spatial and seasonal variations of sugars (alcohol) in China: Emerging results from the CARE-China network [J]. Atmospheric Environment, 2019, 209: 136-143. doi: 10.1016/j.atmosenv.2019.04.029 [11] LI X R, LIU Y S, LI D, et al. Molecular composition of organic aerosol over an agricultural site in North China Plain: Contribution of biogenic sources to PM2.5 [J]. Atmospheric Environment, 2017, 164: 448-457. doi: 10.1016/j.atmosenv.2017.06.018 [12] KANAKIDOU M, SEINFELD J H, PANDIS S N, et al. Organic aerosol and global climate modelling: A review [J]. Atmospheric Chemistry and Physics, 2005, 5(4): 1053-1123. doi: 10.5194/acp-5-1053-2005 [13] ELBERT W, TAYLOR P E, ANDREAE M O, et al. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions [J]. Atmos Chem Phys, 2007, 7(17): 4569-4588. doi: 10.5194/acp-7-4569-2007 [14] 王鑫彤, 鞠法帅, 韩德文, 等. 大气颗粒物中生物质燃烧示踪化合物的研究进展 [J]. 环境化学, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704 WANG X T, JU F S, HAN D W, et al. Research progress on the organic tracers of biomass burning in atmospheric aerosols [J]. Enviromental Chemistry, 2015, 34(10): 1885-1894(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.10.2015040704
[15] 姜建彪, 常青, 冯媛, 等. 石家庄市大气颗粒物中有机碳和元素碳的季节变化特征 [J]. 环境监控与预警, 2017, 9(2): 41-45. doi: 10.3969/j.issn.1674-6732.2017.02.011 JIANG J B, CHANG Q, FENG Y, et al. Seasonal variation of organic carbon and elemental carbon in atmospheric particles in Shijiazhuang [J]. Environmental Monitoring and Forewarning, 2017, 9(2): 41-45(in Chinese). doi: 10.3969/j.issn.1674-6732.2017.02.011
[16] WAN E C H, YU J Z. Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography / negative ion electrospray mass spectrometry [J]. Environmental Science& Technology, 2007, 41(7): 2459-2466. [17] JIA Y, CLEMENTS A L, FRASER M P. Saccharide composition in atmospheric particulate matter in the southwest US and estimates of source contributions [J]. Journal of Aerosol Science, 2010, 41(1): 62-73. doi: 10.1016/j.jaerosci.2009.08.005 [18] 梁林林, ENGLING G, 段凤魁, 等. 北京市大气气溶胶中糖类化合物的组成及来源 [J]. 环境科学, 2015, 36(11): 3935-3942. LIANG L L, ENGLING G, DUAN F K, et al. Composition and source apportionments of saccharides in atmospheric particulate matter in Beijing [J]. Environmental Sciences, 2015, 36(11): 3935-3942(in Chinese).
[19] 马社霞, 王真真, 毕新慧, 等. 广州大气气溶胶中糖类化合物的组成及主要来源 [J]. 科学通报, 2009, 5454(17): 2562-2567. MA S X, WANG Z Z, BI X H, et al. Composition and source of saccharides in aerosols in Guangzhou [J]. Chinese Sci Bull, 2009, 5454(17): 2562-2567(in Chinese).
[20] GRAHAM B, GUYON P, TAYLOR P E, et al. Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatography-mass spectrometry [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D24): 1-13. [21] NIEMALKAP J, DESHMUKH D K, DEB M K, et al. Mass loading and episodic variation of molecular markers in PM2.5 aerosols over a rural area in eastern central India [J]. Atmospheric Environment, 2015, 117: 41-50. doi: 10.1016/j.atmosenv.2015.07.003 [22] YTTRI K E, DYE C, KISS G. Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway [J]. Atmos Chem Phys, 2007, 7(2): 5769-5803. [23] SANG X, ZHANG Z, CHAN C, et al. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau [J]. Atmospheric Environment, 2013, 78: 113-123. doi: 10.1016/j.atmosenv.2012.12.012 [24] DAHLMAN L, PERSSON J, N SHOLM T, et al. Carbon and nitrogen distribution in the green algal lichens hypogymnia physodes and Platismatia glauca in relation to nutrient supply [J]. Planta, 2003, 217(1): 41-48. doi: 10.1007/s00425-003-0977-8 [25] SIMONEIT B R T, ELIASVO, KOBAYASHI M, et al. Sugars dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter [J]. Environmental Science& Technology, 2004, 38(22): 5939-5949. [26] MEDEIROS P M, CONTE M H, WEBER J C, et al. Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine [J]. Atmospheric Environment, 2006, 40(9): 1694-1705. doi: 10.1016/j.atmosenv.2005.11.001 [27] 靳文斌, 李克文, 胥九兵, 等. 海藻糖的特性、功能及应用 [J]. 精细与专用化学品, 2015, 23(1): 30-33. doi: 10.3969/j.issn.1008-1100.2015.01.008 JIN W B, LI K W, XU J B, et al. The character and function of trehalose and its application [J]. Fine and Specialty Chemicals, 2015, 23(1): 30-33(in Chinese). doi: 10.3969/j.issn.1008-1100.2015.01.008
[28] BAUER H E, SCHUELLER G, WEINKE, et al. Significant contributions of fungalspores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol [J]. Atmospheric Environment, 2008, 42(22): 5542-5549. doi: 10.1016/j.atmosenv.2008.03.019