-
大气颗粒物(PM)是我国大气环境中的首要污染物,其化学组成受地区排放特征的影响而变化。在颗粒物载带的化学物质中,碳气溶胶是其中重要组成部分,一般占细颗粒浓度的10%—70%,包含有机碳(OC)和元素碳(EC)两部分。EC主要由燃烧等过程直接排放产生,OC既包含污染源直接排放产生的一次有机碳(POC),也包含由气粒转化产生的二次有机碳(SOC)[1]。由于含碳气溶胶能够对气候变化、辐射平衡、公众健康产生潜在的影响,受到了研究者的持续关注[2-3]。研究内容涉及碳气溶胶浓度变化、SOC贡献等内容,但是这些研究主要集中在发达城市地区,其他地区对于细颗粒物(PM2.5)载带碳组分特征的研究仍存在不足,同时SOC的浓度评估和形成机制研究仍需进行[4]。
近年来,我国大气颗粒物污染已由煤炭型污染转变为复合型污染,汽车尾气的排放对于大气颗粒物的贡献显著增加,PM的污染特征发生持续的变化[5]。本研究在天津市滨海新区设置采样点,分析PM2.5载带含碳气溶胶的浓度特征和来源。鉴于该区域受机动车尾气和船舶尾气排放的影响显著,评估大气酸度变化对SOC浓度水平的影响。研究结果为明确区域大气颗粒物载带碳组分的污染特征,探索SOC生成机制,制定颗粒物污染控制政策提供相关的基础研究支持。
天津滨海新区大气细颗粒物载带碳组分特征
Characterization of Carbonaceous Aerosols at Binhai District, China
-
摘要: 为了研究天津滨海新区大气细颗粒物载带的碳组分浓度水平和来源,于2017年7月在东疆海泽物流园设置了大气监测点,采集PM2.5样品。基于热光反射法(TOR),测定PM2.5中有机碳(OC)和元素碳(EC)的浓度水平、污染特征;利用OC/EC比值法、相关分析法和浓度丰度法等方法对大气颗粒物中碳组分的可能来源等进行分析。结果表明,监测期间滨海新区PM2.5的平均质量浓度为84.65 μg·m−3,高于国家二级标准限值(75 μg·m−3),其中,OC和EC的平均浓度分别为21.03 μg·m−3和8.12 μg·m−3,各占PM2.5的26.2%和9.9%。本次研究样本OC/EC比值在2.07—3.53,平均值为2.66,表明滨海新区存在明显的二次污染,二次有机碳(SOC)含量为4.23 μg·m−3,占OC的20.1%;对OC、EC进行相关性分析,结果显示,两者相关性较好(R=0.776,P<0.01),具有共同的一次来源;基于浓度丰度法对PM2.5中8种碳组分浓度进行分析对比,结果显示滨海大气颗粒物中的碳组分主要来源为机动车排放的汽油尾气,部分来源于燃煤和道路扬尘。Abstract: To understand the concentration and source characteristics of carbonaceous aerosols in Tianjin Binhai district, fine particle was collected in Dongjiang logistics park. OC and EC concentrations were analyzed by the IMPROVE thermal/optical reflectance (TOR) protocol. And emission sources of carbonaceous species were analyzed based on OC/EC ratio, pollutant concentration and correlation results. During the observation campaign, the average concentration of PM2.5 was 84.65 μg·m−3, higher than the Class 2 of PM2.5 standard (75 μg·m−3) in China. The average concentrations of organic carbon (OC) and element carbon (EC) in PM2.5 were 21.03 μg·m−3, and 8.12 μg·m−3, accounting for 26.2% and 9.9% of particulate mass, respectively. The OC/EC ratios varied from 2.07—3.53, with an average value of 2.66, indicating the contribution of secondary pollution in Binhai District. Secondary organic carbon (SOC) calculated based on minimum OC/EC ratio method was 4.23 μg·m−3, accounting for 20.1% of OC. OC and EC were well related with each other (R=0.776, P<0.01), indicating they shared common emission sources. Based on the analysis of eight carbon fraction concentrations, vehicle emission was the predominant source of carbonaceous aerosols in Binhai District, while coal combustion and road dust had less contribution.
-
Key words:
- Tianjin Binhai district /
- PM2.5 /
- carbonaceous aerosols /
- source apportionment
-
表 1 PM2.5中TC、OC、EC的含量(μg·m−3)及其占比
Table 1. The concentration (μg·m−3) and proportion of TC, OC and EC in PM2.5
PM2.5 TC OC EC TC/PM2.5 OC/PM2.5 EC/PM2.5 均值 84.65 29.15 21.03 8.12 36.00% 26.20% 9.90% 最小值 30.74 15.60 11.39 4.06 16.80% 12.30% 4.50% 最大值 92.65 44.00 33.81 12.31 59.80% 46.60% 14.40% 表 2 不同城市PM2.5及其OC、EC、OC/EC对比
Table 2. Comparison of OC, EC and OC/EC in different cities
城市Site 采样时间Sampling period PM2.5/(μg·m−3) OC/(μg·m−3) OC/PM2.5 EC/(μg·m−3) EC/PM2.5 北京[7] 2014.6—2014.7 69.0±47.9 10.91±3.95 15.8% 1.67±0.64 2.4% 上海[8] 2009.7 58.87±20.04 11.37±4.12 19.3% 3.68±1.27 6.3% 济南[9] 2010.1—2011.1 115.12 16.98±10.31 14.75% 5.81±2.82 5.05% 武汉[10] 2011.7—2012.2 127±48.7 19.4±10.5 15.3% 2.9±1.48 2.3% 南京[11] 2007.6—2008.5 98.8 15.7 15.9% 10.4 10.5% 广州[12] 2008.7 53.7±23.2 14.0±5.6 26.1% 4.7±2.2 10.1% 重庆[13] 2012.3—2013.2 125.5±62.9 27.1 21.6% 7.01 6.72% 天津市区[14] 2016.8—2016.9 64.10 7.5±3 11.7% 4.0±1.8 6.1% 本研究 2017.7 84.65 21.03 26.2% 8.12 9.9% 表 3 不同城市OC/EC对比
Table 3. OC/EC ratios observed in different cities
表 4 OC、EC各组分含量(μg·m−3)
Table 4. The concentration of individual OC and EC compound (μg·m−3)
OC1 OC2 OC3 OC4 EC1 EC2 EC3 OPC 平均值 1.74 5.29 5.01 4.29 12.30 0.45 0.08 4.70 最小值 0.63 3.13 3.12 2.44 4.68 0.00 0.00 1.63 最大值 3.07 7.29 6.74 6.68 19.85 1.00 0.44 10.15 -
[1] SAFAI P D, RAJU M P, RAO P S P, et al. Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance [J]. Atmospheric Environment, 2014, 92: 493-500. doi: 10.1016/j.atmosenv.2014.04.055 [2] CAPPA C D, ONASCH T B, MASSOLI P, et al. Radiative absorption enhancements due to the mixing state of atmospheric black carbon [J]. Science, 2013, 337(6098): 1078-1081. [3] XU J, WANG Q Z, DENG C R, et al. Insights into the characteristics and sources of primary and secondary organic carbon: High time resolution observation in urban Shanghai [J]. Environmental Pollution, 2018, 233: 1177-1187. doi: 10.1016/j.envpol.2017.10.003 [4] GRIVAS G, CHERISTANIDIS S, CHALOULAKOU A. Elemental and organic carbon in the urban environment of Athens. Seasonal and diurnal variations and estimates of secondary organic carbon [J]. Science of the Total Environment, 2012, 414: 535-545. doi: 10.1016/j.scitotenv.2011.10.058 [5] 吕连宏, 韩霄, 罗宏, 等. 煤炭消费与大气污染影响下的燃煤火电分区发展策略 [J]. 环境科学研究, 2016, 29(1): 1-11. LV L H, HAN X, LUO H, et al. Coal consumption and air pollution under the influence of coal power zoning development strategy [J]. Research of Environmental Sciences, 2016, 29(1): 1-11(in Chinese).
[6] ZHANG J, TONG L, HUANG Z, et al. Seasonal variation and size distributions of water-soluble inorganic ions and carbonaceous aerosols at a coastal site in Ningbo, China [J]. Science of the Total Environment, 2018, 639: 793-803. doi: 10.1016/j.scitotenv.2018.05.183 [7] 安欣欣, 张大伟, 冯鹏, 等. 北京城区夏季PM2.5中碳组分和二次水溶性无机离子浓度特征 [J]. 环境化学, 2016, 35(4): 713-720. doi: 10.7524/j.issn.0254-6108.2016.04.2015090801 AN X X, ZHANG D W, FENG P, et al. Characteristics of carbonaceous species and secondary water-soluble inorganic ion concentration of PM2.5 in Beijing urban area in summer [J]. Environmental Chemistry, 2016, 35(4): 713-720(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.04.2015090801
[8] 黄众思, 修光利, 朱梦雅, 等. 上海市夏冬两季PM2.5中碳组分污染特征及来源解析 [J]. 环境科学与技术, 2014, 37(4): 124-129. HUANG Z S, XIU G L, ZHU M Y, et al. Pollution characteristics and source apportionment of carbonaceous species in PM2.5 in summer and winter in Shanghai [J]. Environmental Science & Technology, 2014, 37(4): 124-129(in Chinese).
[9] 韩道汶, 王思晴, 安伟. 济南市环境空气中PM2.5的碳组成与特征分析 [J]. 中国环境管理干部学院学报, 2012, 22(4): 42-44. HAN D W, WANG S Q, AN W. Analysis of carbon composition and characteristics of PM2.5 in ambient air of Jinan City [J]. Journal of Environmental Management College of China, 2012, 22(4): 42-44(in Chinese).
[10] 成海容, 王祖武, 冯家良, 等. 武汉市城区大气PM2.5的碳组分与源解析 [J]. 生态环境学报, 2012, 9: 1574-1579. doi: 10.3969/j.issn.1674-5906.2012.09.011 CHENG H R, WANG Z W, FENG J L, et al. Carbon composition and source apportionment of PM2.5 in urban air of Wuhan City [J]. Ecology and Environment, 2012, 9: 1574-1579(in Chinese). doi: 10.3969/j.issn.1674-5906.2012.09.011
[11] 陈魁, 银燕, 魏玉香, 等. 南京大气PM2.5中碳组分观测分析 [J]. 中国环境科学, 2010, 30(8): 1015-1020. CHEN K, YIN Y, WEI Y X, et al. Observation and analysis of carbon components in PM2.5 in Nanjing atmosphere [J]. China Environmental Science, 2010, 30(8): 1015-1020(in Chinese).
[12] 朱李华, 陶俊, 张仁健, 等. 冬夏季广州城区碳气溶胶特征及其与O3和气象条件的关联 [J]. 环境科学学报, 2010, 30(10): 1942-1949. ZHU L H, TAO J, ZHANG R J, et al. Characteristics of carbonaceous aerosols and their correlation with O3 and meteorological conditions in Guangzhou urban areas in winter and summer [J]. Acta Scientiae Circumstantiae, 2010, 30(10): 1942-1949(in Chinese).
[13] 张灿, 周志恩, 翟崇治, 等. 重庆城区不同粒径大气颗粒物中碳组分特征[C]. 中国环境科学学会学术年会论文集, 2015, 3663-3670. ZHANG C, ZHOU Z E, ZHAI C Z, et al. Characteristics of carbon components in atmospheric particulates with different particle sizes in Chongqing urban area[C]. Chinese Society for Environmental Sciences, 2015, 3663-3670 (in Chinese).
[14] 程渊, 刘保双, 毕晓辉, 等. 天津市区夏冬季环境空气PM2.5中碳组分污染特征及来源研究 [J]. 环境科学学报, 2018, 38(9): 3394-3405. CHENG Y, LIU B S, BI X H, et al. Study on pollution characteristics and sources of carbonaceous species in PM2.5 ambient air in Tianjin urban area in summer and winter [J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3394-3405(in Chinese).
[15] TURPIN B J, LIM H-J. Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass [J]. Aerosol Science and Technology, 2001, 35: 602-610. doi: 10.1080/02786820119445 [16] CHOW J C, WATSON J G, LU Z, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX [J]. Atmospheric Environment, 1996, 30(12): 2079-2112. doi: 10.1016/1352-2310(95)00402-5 [17] CUI H, MAO P, ZHAO Y, et al. Patterns in atmospheric carbonaceous aerosols in China: Emission estimates and observed concentrations [J]. Atmospheric Chemistry and Physics, 2015, 15(15): 8657-8678. doi: 10.5194/acp-15-8657-2015 [18] CASTRO L M, PIO C A, HARRISON R M, et al. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations [J]. Atmospheric Environment, 1999, 33(17): 2771-2781. doi: 10.1016/S1352-2310(98)00331-8 [19] ZHOU Y, XUE L, WANG T, et al. Characterization of aerosol acidity at a high mountain site in central eastern China [J]. Atmospheric Environment, 2012, 51(5): 11-20. [20] 吴瑞林, 王建中, 袁克海. 多分格相关与皮尔逊相关的蒙特卡罗仿真 [J]. 北京航空航天大学学报, 2009, 35(12): 1507-1510. WU R L, WANG J Z, YUAN K H. Monte carlo simulation of multi-lattice correlation and Pearson correlation [J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(12): 1507-1510(in Chinese).
[21] LI P H, WANG Y, LI T, et al. Characterization of carbonaceous aerosols at Mount Lu in South China: Implication for secondary organic carbon formation and long-range transport [J]. Environmental Science and Pollution Research, 2015, 22(18): 14189-14199. doi: 10.1007/s11356-015-4654-9 [22] PELTIER R E, SULLIVAN A P, WEBER R J, et al. No evidence for acid-catalyzed secondary organic aerosol formation in power-plant plumes over metropolitan Atlanta, Georgia [J]. Geophysical Research Letters, 2015, 34(6): L06801. [23] RENGARAJAN R, SUDHEER A K, SARIN M M. Aerosol acidity and secondary organic aerosol formation during wintertime over urban environment in western India [J]. Atmospheric Environment, 2011, 45(11): 1940-1945. doi: 10.1016/j.atmosenv.2011.01.026 [24] 黄炯丽, 陈志明, 莫招育, 等. 广西玉林市大气PM10和PM2.5中有机碳和元素碳污染特征分析 [J]. 环境科学, 2018, 39(1): 27-37. HUANG J L, CHEN Z M, MO Z Y, et al. Pollution characteristics analysis of organic and elemental carbon in atmospheric PM10 and PM2.5 in Yulin City, Guangxi Province [J]. Environmental Science, 2018, 39(1): 27-37(in Chinese).
[25] ZHAO P S, DONG F, YANG Y D, et al. Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China [J]. Atmospheric Environment, 2013, 71: 389-398. doi: 10.1016/j.atmosenv.2013.02.010 [26] FENG J L, YU H, SU X F, et al. Chemical composition and source apportionment of PM2.5 during Chinese Spring Festival at Xinxiang, a heavily polluted city in North China: Fireworks and health risks [J]. Atmospheric Research, 2016, 182: 176-188. doi: 10.1016/j.atmosres.2016.07.028 [27] CAO J J, WU F, CHOW J C, et al. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China [J]. Atmospheric Chemistry and Physics, 2005, 5: 3127-3137. doi: 10.5194/acp-5-3127-2005 [28] LIU B S, ZHANG J Y, WANG L, et al. Characteristics and sources of the fine carbonaceous aerosols in Haikou, China [J]. Atmospheric Research, 2018, 199: 103-112. doi: 10.1016/j.atmosres.2017.08.022