-
石化企业是国民经济的支柱产业,给国民带来了极大的能源和经济利润,同时也属于重大的污染源。其中大气污染以无组织排放为主,污染物主要是种类繁多的挥发性有机污染物(VOCs)。挥发性有机污染物(VOCs)是一类常见的大气污染物,是臭氧和二次有机气溶胶的重要前体物[1-2],本身也具有毒理特性,对人体肝脏、血液健康等具有剧烈的生理毒害作用[3-4],部分污染物三氯甲烷、四氯乙烯、苯等对人体甚至有致癌、致畸、致突变作用[5],其污染物排放清单和污染物排放特征研究引起国内外学者的广泛关注。
储罐是石化企业最常用的生产装置,更是最主要的无组织排放源之一,据统计,我国每年约有千万吨级的VOCs从有机液体储罐挥发到大气中[6];美国2003年的一份调查显示,在美国18家石油公司各项污染源VOCs排放量中,储存过程中VOCs排放量约占总排放量的29%[7]。自储罐产生的无组织排放VOCs,一方面降低了油品质量、造成了资源的大量浪费,另一方面排放的大气污染物严重危害了人们的生命健康和生态环境,并带来了一系列的安全问题[8-10]。
目前世界各国自有其适用的储罐无组织排放VOCs定量方法,或是半经验半理论法,或是纯经验法,比如美国环保署EPA推荐方法、美国石油协会API经验法、日本资源能源厅方法等。我国亦于2015年出台了《石化行业VOCs污染源排查工作指南》,然而工作指南中的核算方法是以EPA推荐方法为基准的,相关参数也是基于美国储罐构造现状推导出的,而由于在原料品质、储罐设计标准和管理水平等方面的差异,并不能完全适用于我国。
扩散模式反推法,计算精准、需求污染源信息少、示踪气体扩散过程拟合效果好,是工业点源、面源污染物排放量核算的重要方法,在工业无组织排放源强特征研究中应用广泛[11-14]。然而传统的扩散模式反推法,多采用以电化学和气相色谱为主的定点采样分析方法,就其本身而言,具有采样分析过程复杂、耗费人力物力大、测量范围小、只能反映监测区域定时、定点、局部的监测结果,不能实现大范围区域环境监测,无法实现实时在线自动监测,不能满足及时、准确、全面反映环境质量动态和污染源动态变化的需求。
随着科技的进步,环境监测技术的发展,仪器分析以及计算机技术的广泛应用,各国科技工作者将遥感技术广泛应用于大气环境自动监测系统。本文以遥感FTIR技术为基础,提出了一种针对于石化罐区VOCs源强的核算方法:基于遥感FTIR的扩散模式反推法[15],旨在为我国石化罐区无组织排放VOCs核算方法的构建提供数据、技术支持。
基于遥感FTIR-扩散模式反推模型的中国北方某石化企业石脑油罐区VOCs源强反演
Inversion research in VOCs source emission of naphtha tank farm in a petrochemical enterprise in North China
-
摘要: 储罐是石化企业最常用的生产装置,更是最主要的无组织排放源之一,自储罐排放的无组织排放VOCs,一方面降低了油品质量、造成了资源的大量浪费,另一方面排放的大气污染物也严重危害了人们的生命健康和生态环境。针对于石化罐区无组织排放VOCs,建立了同时具备遥感FTIR和扩散模式反推法两者优势的源强反演模型,并在我国北方某石化企业20万m3石脑油罐区进行了6 d的外场监测,详尽的检验源强反演模型的实际应用状况,同时为我国石油化工行业储罐区VOCs排放特征提供参考,为工业面源VOCs排放量计算方法的构建提供数据支撑。研究结果表明,该石脑油罐区VOCs排放体量大,对周边大气环境影响明显;以扣除背景点的受体点VOCs作为该罐区的VOCs排放化学成分谱,其体积浓度百分比分别为:乙烯(8.48%)、乙烷(22.73%)、丙烷(10.35%)、异丁烷(8.10%)、己烷(7.11%)、庚烷(24.22%)、甲基叔丁基醚(6.90%);根据源强反演模型,20万m3石脑油罐区的VOCs排放量约为0.41 g·s−1,比指南公式法计算结果高45%,分析是由于指南公式法相关系数尚未实现“本土化”及监测时段的气象条件共同造成的。
-
关键词:
- 遥感FTIR-扩散模式反推模型 /
- 储罐 /
- 源强反演 /
- 挥发性有机物
Abstract: Storage tank is the most commonly used production device in petrochemical enterprises, and also one of the most important unorganized emission sources. On the one hand, the unorganized VOCs emission from the storage tank reduces the quality of oil products and causes a large amount of waste of resources, on the other hand, the emission of air pollutants also seriously endangers people's life, health and ecological environment. In view of the unorganized VOCs emission from the petrochemical tank farm, a source strength calculation method with the advantages of both remote sensing FTIR and inverse dispersion modeling was established. Six-day field monitoring was carried out in a tank farm of a petrochemical enterprise in northern China to test the actual application of the source strength calculation method in detail, and to provide a reference and data support for the VOCs emission characteristics of the tank farm. The results showed that the VOCs emission volume in this area was large, which had a significant impact on the surrounding atmospheric environment; Taking VOCs subtracted in background from those in receptors as the emission chemical composition spectrum of VOCs in the tank farm, the volume concentration percentages of VOCs were ethylene (8.48%), ethane (22.73%), propane (10.35%), isobutane (8.10%), hexane (7.11%), heptane (24.22%) and methyl tert butyl ether (6.90%); According to the source strength calculation method, the VOCs emission of the tank farm was about 0.41 g·s−1, which was 45% higher than the calculation result of the guide formula method, owning to the influence of the unlocalized emission factor and the changeable meteorological conditions. -
表 1 现场数据采集详细状况
Table 1. Detail conditions of VOCs date acquisition
实验编号
Experiment number监测日期
Monitoring date风向
Wind direction风速/(m·s−1)
Wind speed大气稳定度
Atmospheric stability光程长度/m
Optical path length1 2017.10.10 西 3.9—5.7 C,C—D 205 2 2017.10.11 西 3.7—6.9 C,C—D 205 3 2017.10.12 西 4.1—6.8 C,C—D 204 4 2017.10.14 西 4.1—6.5 C,C—D 205 5 2017.10.16 西、西-西北 3.9—6.3 C,C—D 205 6 2017.10.17 西、西-西南 4.1—6.9 C,C—D 205 C,弱不稳定。C, Less stable. D,中性;D, Neutral. 表 2 实验1中 14种VOCs化合物推算结果
Table 2. Calculation case of 14 species at experiment-1
污染物Compounds ∆C/(mg·m−3·m) Q/(g·s−1) 乙烯 0.0490 0.0140 乙烷 0.1569 0.0460 丙烷 0.1117 0.0347 正丁烯 0.0127 0.0054 异丁烯 0.0064 0.0033 正丁烷 0.0467 0.0155 异丁烷 0.0930 0.0267 戊烷 0.0169 0.0051 己烷 0.1397 0.0414 庚烷 0.5929 0.1843 甲醛 0.0093 0.0027 乙醛 0.0298 0.0089 甲基叔丁基醚 0.1270 0.0370 甲苯酚 0.0004 0.0001 -
[1] 邵俊伟, 吕金泽, 李激, 等. 多孔TiO2空心球降解挥发性有机物的性能 [J]. 环境化学, 2019, 38(10): 2195-2202. doi: 10.7524/j.issn.0254-6108.2018112607 SHAO J W, LV J Z, LI J, et al. The degradation of volatile organic compounds by porous TiO2 hollow spheres [J]. Environmental Chemistry, 2019, 38(10): 2195-2202(in Chinese). doi: 10.7524/j.issn.0254-6108.2018112607
[2] HATFIELD M L, HARTZ K E H. Secondary organic aerosol from biogenic volatile organic compound mixtures [J]. Atmospheric Environment, 2011, 45(13): 2211-2219. doi: 10.1016/j.atmosenv.2011.01.065 [3] 宋荣娜, 杨晓芳, 吕明晗, 等. HS-SPME-GC/MS同时测定污废水中多种VOCs异味物质 [J]. 环境化学, 2019, 38(5): 1047-1056. SONG R N, YANG X F, LV M H, et al. Simultaneous determination of various odorous VOC substances in sewage wastewater by HS-SPME-GC/MS [J]. Environmental Chemistry, 2019, 38(5): 1047-1056(in Chinese).
[4] 王晓彤, 揣玉凤, 王丽芳, 等. 室内VOCs对学龄前儿童哮喘、过敏性鼻炎和湿疹的影响 [J]. 环境化学, 2018, 37(9): 1901-1909. doi: 10.7524/j.issn.0254-6108.2017110904 WANG X T, CHUAI Y F, WANG L F, et al. Association between and indoor VOCs and asthma, allergic rhinitis, eczema in preschool children [J]. Environmental Chemistry, 2018, 37(9): 1901-1909(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110904
[5] DUMANOGLU Y, KARA M, ALTIOK H, et al. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region [J]. Atmospheric Environment, 2014, 98: 168-178. doi: 10.1016/j.atmosenv.2014.08.048 [6] 周学双, 崔书红, 童莉, 等. 石化化工企业挥发性有机物污染源排查及估算方法研究与实践[M]. 北京: 中国环境出版社, 2015: 89-90. ZHOU X S, CUI S H, TONG L, et al. Research and practice on investigation and estimation of VOC pollution sources in petrochemical enterprises[M]. Beijing: China Environment Press, 2015: 89-90(in Chinese).
[7] MACTEC Federal Programs. Evaluating petroleum industry VOC emissions in delaware, New Jersey and Southeastern Pennsylvania [EB/QL]. [2019-09]. https://s3.amazonaws.com/marama.org/wp-ontent/uploads/2019/09/04185307/refineryVOC_1003.pdf. [8] 刘敏敏, 刘芳, 王永强, 等. 石化企业储罐大呼吸损耗影响因素的分析 [J]. 化工环保, 2017, 37(3): 357-361. doi: 10.3969/j.issn.1006-1878.2017.03.019 LIU M M, LIU F, WANG Y Q, et al. Analysis on factors affecting breathing loss of storage tank in petrochemical industry [J]. Environmental Protection of Chemical Industry, 2017, 37(3): 357-361(in Chinese). doi: 10.3969/j.issn.1006-1878.2017.03.019
[9] 吴宏章, 黄维秋, 杨光, 等. 内浮顶油罐“小呼吸”对环境影响过程的分析 [J]. 环境科学, 2013, 34(12): 4712-4717. WU H Z, HUANG W Q, YANG G, et al. Analysis of the distribution of VOCs concentration field with oil static breathing loss in internal floating roof tank [J]. Environmental Science, 2013, 34(12): 4712-4717(in Chinese).
[10] 阿克木·吾马尔, 蔡思翌, 赵斌, 等. 油品储运行业挥发性有机物排放控制技术评估 [J]. 化工环保, 2015, 35(1): 64-68. doi: 10.3969/j.issn.1006-1878.2015.01.013 AKEMU W M E, CAI S Y, ZHAO B, et al. Comprehensive evaluation of volatile organic compounds control technologies for oil storage and transportation [J]. Environmental Protection of Chemical Industry, 2015, 35(1): 64-68(in Chinese). doi: 10.3969/j.issn.1006-1878.2015.01.013
[11] 吕兆丰, 魏巍, 杨干, 等. 某石油炼制企业VOCs排放源强反演研究 [J]. 中国环境科学, 2015, 35(10): 2958-2963. doi: 10.3969/j.issn.1000-6923.2015.10.010 LV Z F, WEI W, YANG G, et al. Inversion research in VOCs source emission of a petroleum refinery [J]. China Environmental Science, 2015, 35(10): 2958-2963(in Chinese). doi: 10.3969/j.issn.1000-6923.2015.10.010
[12] 王栋成, 林国栋, 徐宗波. 大气环境影响评价实用技术[M]. 北京: 中国标准出版社, 2010: 154-157. WANG D C, LIN G D, XU Z B. Practical technology of atmospheric environmental impact assessment[M]. Beijing: China Environment press, 2010: 154-157(in Chinese).
[13] 赵东风, 张鹏, 戚丽霞, 等. 地面浓度反推法计算石化企业无组织排放源强 [J]. 化工环保, 2013, 33(1): 71-75. doi: 10.3969/j.issn.1006-1878.2013.01.017 ZHAO D F, ZHANG P, QI L X, et al. Accounting of fugitive emission source intensity in petrochemical enterprises by ground concentration reverse calculation method [J]. Environmental Protection of Chemical Industry, 2013, 33(1): 71-75(in Chinese). doi: 10.3969/j.issn.1006-1878.2013.01.017
[14] 王静, 王栋成, 张爱英, 等. 确定工业企业卫生防护距离技术方法研究 [J]. 环境科学与技术, 2007(09): 75-77, 119. doi: 10.3969/j.issn.1003-6504.2007.09.026 WANG J, WANG D C, ZHANG A Y, et al. Study on the technical method of determining the health protection distance of industrial enterprises [J]. Environmental Science and Technology, 2007(09): 75-77, 119(in Chinese). doi: 10.3969/j.issn.1003-6504.2007.09.026
[15] 邹兵, 王国龙, 赵东风. 石化罐区挥发性有机物源强反演技术的研究 [J]. 环境工程, 2017, 35(10): 87-90. ZOU B, WANG G L, ZHAO D F. Technology of deducing emissions of volatile organic compounds from petrochemical tank by inverse dispersion modeling [J]. Environmental Engineering, 2017, 35(10): 87-90(in Chinese).
[16] 赵玉迪. 基于人工神经网络的多组分污染气体浓度反演方法研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2018. ZHAO Y D. Research on multi-components concentration retrieving methods based on artificial neural network[D]. Xi’ an: University of Chinese Academy of Sciences, 2018(in Chinese).
[17] 高乾坤. 工业燃烧高温气体红外辐射光谱检测技术研究[D]. 合肥: 中国科学技术大学, 2017. GAO Q K. Detection of infrared radiation gas with high temperature in industrial combustion[D]. Hefei: University of Science and Technology of China, 2017(in Chinese).
[18] 刘文清, 陈臻懿, 刘建国, 等. 中国大气环境光学探测研究 [J]. 遥感学报, 2016, 20(5): 724-732. LIU W Q, CHEN Z Y, LIU J G, et al. Research progress on optical observations for atmospheric environment in China [J]. Journal of Remote Sensing, 2016, 20(5): 724-732(in Chinese).
[19] 朱超. FTIR环境监测系统若干关键技术的研究[D]. 合肥: 合肥工业大学, 2013. ZHU C. Research of several key technologies for environment monitoring system based on FTIR[D]. Hefei: Hefei University of Technology, 2013(in Chinese).
[20] 陆立群. 石化企业储罐无组织排放VOC的定量研究[D]. 上海: 东华大学, 2007. LU L Q. Study on quantitative estimation methods for fugitive emission fron tanks in petrochemical industry[D]. Shanghai: Dong Hua University, 2007(in Chinese).
[21] 环境保护部办公厅. 石化行业VOCs污染源排查工作指南[EB/QL]. [2019-3-4]. http://www.meee.gov.cn/gkml/hbb/bgt/201511/t20151124_317577.htm. Ministry of Ecology and Environment of the People’s Republic of China. Work guide for VOCs Pollution Source Investigation in petrochemical industry[EB/QL]. [2019-3-4]. http://www.meee.gov.cn/gkml/hbb/bgt/201511/t20151124_317577.htm(in Chinese).