-
二噁英(polychlorinated dibenzo-p-dioxins and dibenzofurans,PCDD/Fs)是多氯代二苯并-对-二噁英(polychlorinated dibenzo-p-dioxins,PCDDs)和多氯代二苯并呋喃(polychlorinated dibenzofurans,PCDFs)的总称. PCDD/Fs是《关于持久性有机污染物的斯德哥尔摩公约》中首批持久性污染物之一,具有高毒性、环境持久性、长距离迁移性和生物累积性[1]. 在造纸过程中,PCDD/Fs主要产生于纸浆的含氯漂白阶段[2-6],其主要来源于未漂浆中二苯并-对-二噁英或二苯并呋喃(dibenzo-p-dioxin and dibenzofuran,DBD/F)的直接氯化和不可萃取态前体的转化[7-9]. 实际上,DBD/F广泛存在于环境体系中,在木材、水和空气中也检测到DBD/F[8, 10]. 工业过程中DBD/F的含量常常几个数量级地高于PCDD/Fs,且DBD/F的氯化也是PCDD/Fs生成的重要途径[11]. 而未漂浆中含量较高的酚类,如苯酚、愈创木酚和儿茶酚[12],它们在氯漂白中生成氯化的酚类[13],成为一种可吸附性有机卤化物而进入漂白浆和废液. 其中苯酚是氯化反应中最常见的酚类[14-16],愈创木酚是木素降解的主要结构单元[17],儿茶酚作为一种二羟基苯类物质,其氯化和降解也得到了研究[16, 18]. 我们最近对水溶液和纸浆体系中DBD/F氯化生成PCDD/Fs的动力学和途径做了探索[9]. 但是,目前鲜有对DBD/F和酚类共存体系的氯化研究. 由于DBD/F和酚类在环境中的普遍存在性,对酚类存在时DBD/F氯化生成PCDD/Fs的研究是有必要的.
本研究首先对实验环境中的DBD/F值进行表征检测,随后在纸浆氯漂白条件下进行氯化实验,对不同种类酚类和不同剂量酚类对DBD/F氯化生成PCDD/Fs的影响进行了研究.
纸浆中代表性酚类对二苯并-对-二噁英/二苯并呋喃氯化生成多氯代二噁英的影响
Effect of representative phenols in pulp on the chlorination of dibenzo-p-dioxin/dibenzofuran into polychlorinated dibenzo-p-dioxins and dibenzofurans
-
摘要: 二苯并-对-二噁英/二苯并呋喃(DBD/F)的直接氯化是纸浆氯漂白过程中形成多氯代二噁英(PCDD/Fs)的重要途径. 纸浆中的酚类在氯化漂白过程中也将消耗氯而生成氯化产物. 本文在模拟纸浆氯漂白的实验条件下,对实验环境中的DBD/F进行检测,排除了背景DBD/F值对实验的干扰后,研究了纸浆中含量较高的酚类(苯酚、愈创木酚和儿茶酚)对DBD/F氯化生成PCDD/Fs的转化率和同系物模式的影响. 发现酚类的加入使DBD/F氯化生成PCDD/Fs的氯化度下降;一定剂量酚类的加入会使体系中DBD/F氯化生成PCDD/Fs的转化率增大,当超出剂量范围后,DBD/F氯化生成PCDD/Fs得到抑制,不同酚类的效应大小各不相同.
-
关键词:
- 酚类 /
- 二苯并-对-二噁英/二苯并呋喃 /
- 二噁英 /
- 氯化
Abstract: Direct chlorination of dibenzo-p-dioxin/dibenzofuran (DBD/F) is an important way to form polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during chlorine bleaching of pulp. The phenols in the pulp also consume chlorine during the chlorine bleaching process to produce corresponding chlorinated products. In this study, under the condition of simulating the chlorine bleaching of pulp, the DBD/F in the experimental environment was detected, and the background DBD/F value was excluded from the experiment. The effect of phenols (phenol, guaiacol and catechol) with high content in pulp on the conversion efficiency and homolog distribution of PCDD/Fs generated from DBD/F chlorination was studied. It was found that the degree of chlorination of PCDD/Fs decreased with the addition of phenols. The addition of a certain amount of phenols increased the conversion rate of DBD/F to PCDD/Fs in the system. When the phenolic dosage was exceeded, the chlorination of DBD/F to PCDD/Fs was inhibited, and the effects of different phenols were different.-
Key words:
- phenols /
- DBD/F /
- PCDD/Fs /
- chlorination
-
图 3 水、苯酚、愈创木酚和儿茶酚体系中DBD/F氯化生成PCDD/Fs的同系物分布模式.Spike level 1−4分别表示酚类的投入量为0.5 g,而DBF/DBD的投入量为:0/0、1000/100、2000/200、4000/400 ng.
Figure 3. Homologous distribution patterns of PCDD/Fs generated by DBD/F chlorination in pure water and water spiked with phenol, guaiacol and catechol. Spike level 1−4 indicates that the input of phenols was 0.5 g, and the input of DBF/DBD was: 0/0, 1000/100, 2000/200, 4000/400 ng, respectively.
图 4 苯酚、愈创木酚和儿茶酚不同用量时DBD/F氯化生成PCDD/Fs的同系物分布模式.DBF和DBD的投入量分别为2000 ng和200 ng,酚类的投入量分别为0.25、0.5、0.75、1.0 g.
Figure 4. Homologues distribution patterns of PCDD/Fs generated by chlorination of DBD/F at different dosage of phenol, guaiacol and catechol wherein the input amounts of DBF and DBD were 2000 ng and 200 ng respectively, and the input amounts of phenols were 0.25, 0.5, 0.75 and 1.0 g, respectively.
图 5 苯酚、愈创木酚和儿茶酚不同用量时DBD/F氯化生成PCDD/Fs的含量DBF和DBD的投入量分别为2000 ng和200 ng,酚类的投入量分别为0、0.25、0.5、0.75、1.0 g.
Figure 5. Content of PCDD/Fs generated by chlorination of DBD/F at different dosage of phenol, guaiacol and catechol, wherein the input amounts of DBF and DBD were 2000 ng and 200 ng respectively, and the input amounts of phenols were 0, 0.25, 0.5, 0.75 and 1.0 g, respectively.
-
[1] United Nations Environment Programme (UNEP). Stockholm convention on persistent organic pollutants[EB/OL]. [2020-1-16], 2001. http://chm.pops.int/TheConvention/ThePOPs/The12InitialPOPs/tabid/296/Default.aspx. [2] ZHENG M H, BAO Z C, ZHANG B, et al. Polychlorinated dibenzo-p-dioxins and dibenzofurans in paper making from a pulp mill in China [J]. Chemosphere, 2001, 44(6): 1335-1337. doi: 10.1016/S0045-6535(00)00488-4 [3] BLANCO A, NEGRO C, MONTE C, et al. Peer reviewed: The challenges of sustainable papermaking [J]. Environmental Science & Technology, 2004, 38(21): 414A-420A. [4] WANG X L, NI Y W, ZHANG H J, et al. Formation and emission of PCDD/Fs in Chinese non-wood pulp and paper mills [J]. Environmental Science & Technology, 2012, 46(21): 12234-12240. [5] 夏科学, 倪余文, 张海军, 等. 纸浆氯漂白过程中二噁英的来源及生成机制研究进展 [J]. 环境化学, 2016, 35(9): 1823-1832. doi: 10.7524/j.issn.0254-6108.2016.09.2016012704 XIA K X, NI Y W, ZHANG H J, et al. Sources and formation mechanisms of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in the process of pulp bleaching with chlorine [J]. Environmental Chemistry, 2016, 35(9): 1823-1832(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2016012704
[6] AXEGARD P. The effect of the transition from elemental chlorine bleaching to chlorine dioxide bleaching in the pulp industry on the formation of PCDD/Fs [J]. Chemosphere, 2019, 236: 124386. doi: 10.1016/j.chemosphere.2019.124386 [7] LAFLEUR L, BRUNCK B, MCDONOUGH T, et al. Studies on the mechanism of PCDD/PCDF formation during the bleaching of pulp [J]. Chemosphere, 1990, 20(10): 1731-1738. [8] DIMMEL D R, RIGGS K B, PITTS G, et al. Formation mechanisms of polychlorinated dibenzo-p-dioxins and dibenzofurans during pulp chlorination [J]. Environmental Science & Technology, 1993, 27(12): 2553-2558. [9] XIA K X, NI Y W, ZHAN F Q, et al. Mechanistic aspects of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) formation from chlorine bleaching of non-wood pulp [J]. Journal of Hazardous materials, 2020, 386: 121652. doi: 10.1016/j.jhazmat.2019.121652 [10] VOSS R H, LUTHE C E, FLEMING B I, et al. Some new insights into the origins of dioxins formed during chemical pulp bleaching [J]. Pulp & Paper Canada, 1988, 89(12): 151-162. [11] ALTARAWNEH M, DLUGOGORSKI B Z, KENNEDY E M, et al. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) [J]. Progress in Energy and Combustion Science, 2009, 35(3): 245-274. doi: 10.1016/j.pecs.2008.12.001 [12] WANG X L, CHEN J P, NI Y W. Polychlorinated dibenzo-p-dioxin and dibenzofuran precursors and formation mechanisms during non-woodpulp chlorine bleaching process [J]. Chemosphere, 2018, 211: 1-9. doi: 10.1016/j.chemosphere.2018.07.126 [13] MALHOTRA R, PRAKASH D, SHUKLA S K, et al. Comparative study of toxic chlorophenolic compounds generated in various bleaching sequences of wheat straw pulp [J]. Clean Technologies and Environmental Policy, 2013, 15(6): 999-1011. doi: 10.1007/s10098-013-0578-6 [14] GALLARD H, VON GUNTEN U. Chlorination of phenols: Kinetics and formation of chloroform [J]. Environmental Science & Technology, 2002, 36(5): 884-890. [15] LAU S S, ABRAHAM S M, ROBERTS A L. Chlorination revisited: Does Cl– serve as a catalyst in the chlorination of phenols? [J]. Environmental Science & Technology, 2016, 50(24): 13291-13298. [16] PRASSE C, VON GUNTEN U, SEDLAK D L. Chlorination of phenols revisited: Unexpected formation of α,β-unsaturated C4-dicarbonyl ring cleavage products [J]. Environmental Science & Technology, 2020, 54(2): 826-834. [17] DIER T K F, EGELE K, FOSSOG V, et al. Enhanced mass defect filtering to simplify and classify complex mixtures of lignin degradation products [J]. Analytical Chemistry, 2016, 88(2): 1328-1335. doi: 10.1021/acs.analchem.5b03790 [18] REBENNE L M, GONZALEZ A C, OLSON T M. Aqueous chlorination kinetics and mechanism of substituted dihydroxybenzenes [J]. Environmental Science & Technology, 1996, 30(7): 2235-2242. [19] 中华人民共和国环境保护部. 水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法 [S]; HJ 77.1–2008; 2008.Ministry of Environmental Protection of the People’s Republic of China. Water-determination of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans-isotope dilution HRGC-HRMS [S]; HJ77.1-2008; 2008(in Chinese). [20] SIVEY J D, MCCULLOUGH C E, ROBERTS A L. Chlorine monoxide (Cl2O) and molecular chlorine (Cl2) as active chlorinating agents in reaction of dimethenamid with aqueous free chlorine [J]. Environmental Science & Technology, 2010, 44(9): 3357-3362. [21] LAU S S, REBER K P, ROBERTS A L. Aqueous chlorination kinetics of cyclic alkenes—Is HOCl the only chlorinating agent that matters? [J]. Environmental Science & Technology, 2019, 53(19): 11133-11141. [22] LI Q, YU J, CHEN W, et al. Degradation of triclosan by chlorine dioxide: Reaction mechanism,2,4-dichlorophenol accumulation and toxicity evaluation [J]. Chemosphere, 2018, 207: 449-456. doi: 10.1016/j.chemosphere.2018.05.065