水中Mn(Ⅲ)介导的头孢哌酮钠转化机制

朱文雪, 陈莹莹, 张彬, 黄应平, 李瑞萍. 水中Mn(Ⅲ)介导的头孢哌酮钠转化机制[J]. 环境化学, 2020, (8): 2206-2216. doi: 10.7524/j.issn.0254-6108.2020013001
引用本文: 朱文雪, 陈莹莹, 张彬, 黄应平, 李瑞萍. 水中Mn(Ⅲ)介导的头孢哌酮钠转化机制[J]. 环境化学, 2020, (8): 2206-2216. doi: 10.7524/j.issn.0254-6108.2020013001
ZHU Wenxue, CHEN Yingying, ZHANG Bin, HUANG Yingping, LI Ruiping. Mn (Ⅲ)-mediated transformation of cefoperazone sodium in water: A Proposed Transformation Mechanism[J]. Environmental Chemistry, 2020, (8): 2206-2216. doi: 10.7524/j.issn.0254-6108.2020013001
Citation: ZHU Wenxue, CHEN Yingying, ZHANG Bin, HUANG Yingping, LI Ruiping. Mn (Ⅲ)-mediated transformation of cefoperazone sodium in water: A Proposed Transformation Mechanism[J]. Environmental Chemistry, 2020, (8): 2206-2216. doi: 10.7524/j.issn.0254-6108.2020013001

水中Mn(Ⅲ)介导的头孢哌酮钠转化机制

    通讯作者: 李瑞萍, E-mail: rpli_ctgu@163.com
  • 基金项目:

    国家自然科学基金(21577077)和三峡大学硕士学位论文培优基金(2019SSPY148)资助.

Mn (Ⅲ)-mediated transformation of cefoperazone sodium in water: A Proposed Transformation Mechanism

    Corresponding author: LI Ruiping, rpli_ctgu@163.com
  • Fund Project: Supported by the National Natural Science Foundation of China (21577077) and Research Fund for Excellent Dissertation of China Three Gorges University (2019SSPY148).
  • 摘要: 一些常见金属离子如Cu(Ⅱ)、Fe(Ⅲ)或Mn(Ⅱ)等对水中头孢菌素类抗生素(CEPs)水解具有促进作用,已有研究证实高锰酸钾/亚硫酸氢钠(PM/BS)体系生成的Mn(Ⅲ)能高效氧化去除多种有机污染物,而Mn(Ⅲ)对CEPs的转化作用尚不明确.本研究以头孢哌酮钠(CFZ)为目标化合物,考察了Mn(Ⅲ)介导对水中CEPs的转化作用,研究了PM和BS浓度、初始pH、共存组分等因素对Mn(Ⅲ)转化CFZ的影响,采用超高效液相色谱串联质谱法(UPLC-MS/MS)对CFZ的转化产物进行了分析.结果表明,当PM和BS浓度分别为5.0 μmol·L-1和20 μmol·L-1、反应介质为弱酸性时更有利于Mn(Ⅲ)对CFZ的转化.加入Mg2+会促进PM/BS体系对CFZ的转化,而HCO3-和腐殖酸对CFZ的转化起到抑制作用.通过加入过量焦磷酸盐得出82.2%的CFZ是由于Mn(Ⅲ)介导而降解,根据UPLC-MS/MS分析其降解产物推测,Mn(Ⅲ)介导的CFZ降解主要包括水解和氧化两条路径.该研究阐明了Mn(Ⅲ)在CEPs环境转化中的作用,对深入认识Mn物种及CEPs在环境中的转化规律提供了新的参考价值.
  • 加载中
  • [1] 王冰, 孙成, 胡冠九. 环境中抗生素残留潜在风险及其研究进展[J]. 环境科学与技术, 2007, 30(3):108-111.

    WANG B, SUN C, HU G J. Residue antibiotics in environment:Potential risks and relevant studies[J]. Environmental Science & Technology, 2007, 30(3):108-111(in Chinese).

    [2] 高立红, 史亚利, 厉文辉, 等. 抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013, 32(9):1619-1633.

    GAO L H, SHI Y L, LI W H, et al. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry, 2013, 32(9):1619-1633(in Chinese).

    [3] WANG X H, LIN A Y. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity[J]. Environmental Science & Technology, 2012, 46(22):12417-12426.
    [4] 李媛, 魏东斌, 杜宇国. 锰氧化物对有机污染物的转化机制研究进展[J]. 环境化学, 2013, 32(7):1288-1299.

    LI Y, WEI D B, DU Y G. A review on the transformation mechanisms of typical organic pollutants by manganese oxide[J]. Environmental Chemistry, 2013, 32(7):1288-1299(in Chinese).

    [5] SU J M. DENG L, HUANG L B, et al. Catalytic oxidation of manganese(Ⅱ) by multicopper oxidase CueO and characterization of the biogenic Mn oxide[J]. Water Research, 2014, 56:304-313.
    [6] SUN B, XIAO Z J, DONG H Y, et al. Bisulfite triggers fast oxidation of organic pollutants by colloidal MnO2[J]. Journal of Hazardous Materials, 2019, 363:412-420.
    [7] IM J, PREVATTE C W, CAMPAGNA S R, et al. Identification of 4-hydroxycumyl alcohol as the major MnO2-mediated bisphenol A transformation product and evaluation of its environmental fate[J]. Environmental Science & Technology, 2015, 49(10):6214-6221.
    [8] ZHANG H C, HUANG C H. Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide[J]. Environmental Science & Technology, 2005, 39(12):4474-4483.
    [9] TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic manganese oxides:Properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1):287-328.
    [10] DAVID H, STEVEN E. Oxidation of manganese by spores of a marine bacillus:Kinetic and thermodynamic considerations[J]. Geochimica et Cosmochimica Acta, 1986, 50(8):1819-1824.
    [11] ZHANG Y, TANG Y K, QIN Z Y, et al. A novel manganese oxidizing bacterium-Aeromonas hydrophila strain DS02:Mn(Ⅱ) oxidization and biogenic Mn oxides generation[J]. Journal of Hazardous Materials, 2019, 367:539-545.
    [12] SUN B, BAO Q Q, GUAN X H. Critical role of oxygen for rapid degradation of organic contaminants in permanganate/bisulfite process[J]. Journal of Hazardous Materials, 2018, 352:157-164.
    [13] 孙波. NaHSO3活化KMnO4快速氧化水中微量有机污染物的效能与机理[D]. 哈尔滨:哈尔滨工业大学, 2017:4-124. SUN B. Kinetics and mechanisms on the fast degradation of micro-organic contaminants by bisulfite activated permanganate[D]. Harbin:Harbin Institute of Technology, 2017:4

    -124(in Chinese).

    [14] ZHU Y T, YANG X, QIAO J L, et al. Effects of KMnO4/NaHSO3 pre-oxidation on the formation potential of disinfection by-products during subsequent chlorination[J]. Chemical Engineering Journal, 2019, 372:825-835.
    [15] ZHONG S F, ZHANG H C. New insight into the reactivity of Mn(Ⅲ) in bisulfite/permanganate for organic compounds oxidation:The catalytic role of bisulfite and oxygen[J]. Water Research, 2019, 148:198-207.
    [16] RIBEIRO A R, SURES B, SCHMIDT T C. Cephalosporin antibiotics in the aquatic environment:A critical review of occurrence, fate, ecotoxicity and removal technologies[J]. Environmental Pollution, 2018, 241:1153-1166.
    [17] GENSMANTEL N P, PROCTOR P, PAGE M I. Metal-ion catalysed hydrolysis of some β-lactam antibiotics[J]. Journal of the Chemical Society Perkin Transactions, 1980, 11:1725-1732.
    [18] NAVARRO P G, BLAZQUEZ I H, OSSO B Q, et al. Penicillin degradation catalysed by Zn(Ⅱ) ions in methanol[J]. International Journal of Biological Macromolecules, 2003, 33(4):159-166.
    [19] CHEN J B, WANG Y, QIAN Y J, et al. Fe(Ⅲ)-promoted transformation of β-lactam antibiotics:Hydrolysis vs oxidation[J]. Journal of Hazardous Materials, 2017, 335:117-124.
    [20] CHEN J B, SUN P Z, ZHOU X F, et al. Cu(Ⅱ)-catalyzed transformation of benzylpenicillin revisited:The overlooked oxidation[J]. Environmental Science & Technology, 2015, 49(7):4218-4225.
    [21] HUANG T Y, FANG C, QIAN Y J, et al. Insight into Mn(Ⅱ)-mediated transformation of β-lactam antibiotics:The overlooked hydrolysis[J]. Chemical Engineering Journal, 2017, 321:662-668.
    [22] CHEN W R, HUANG C H. Transformation of tetracyclines mediated by Mn(Ⅱ) and Cu(Ⅱ) ions in the presence of oxygen[J]. Environmental Science & Technology, 2009, 43(2):401-407.
    [23] ZHANG H C, HUANG C H. Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide[J]. Environmental Science & Technology, 2005, 39(12):4474-4483.
    [24] MITCHELL S M, ULLMAN J L, TEEL A L, et al. pH and temperature effects on the hydrolysis of three β-lactam antibiotics:Ampicillin, cefalotin and cefoxitin[J]. Science of The Total Environment, 2014, 466/467:547-555.
    [25] LI L P, WEI D B, WEI G H, et al. Oxidation of cefazolin by potassium permanganate:Transformation products and plausible pathways[J]. Chemosphere, 2016, 149:279-285.
    [26] XU L, DONG H Y, XU K, et al. Accelerated degradation of pesticide by permanganate oxidation:A comparison of organic and inorganic activations[J]. Chemical Engineering Journal, 2019, 369:1119-1128.
    [27] QIAN Y J, GAO P, XUE G, et al. Oxidation of cefalexin by permanganate:Reaction kinetics, mechanism, and residual antibacterial activity[J]. Molecules, 2018, 23(8):1-12.
    [28] CHEN J, QU R J, PAN X X, et al. Oxidative degradation of triclosan by potassium permanganate:Kinetics, degradation products, reaction mechanism, and toxicity evaluation[J]. Water Research, 2016, 103:215-223.
    [29] CAGNARDI P, VILLA R, MALLO M, et al. Cefoperazone sodium preparation behavior after intramammary administration in healthy and infected cows[J]. American Dairy Science Association, 2010, 93(9):4105-4110.
    [30] GAO Y, JIANG J, ZHOU Y, et al. Unrecognized role of bisulfite as Mn(Ⅲ) stabilizing agent in activating permanganate (Mn(Ⅶ)) for enhanced degradation of organic contaminants[J]. Chemical Engineering Journal, 2017, 327:418-422.
    [31] SUN B, LI D, LINGHU W S, et al. Degradation of ciprofloxacin by manganese(Ⅲ) intermediate:Insight into the potential application of permanganate/bisulfite process[J]. Chemical Engineering Journal, 2018, 339:144-152.
    [32] SUN B, RAO D D, SUN Y H, et al. Auto-accelerating and auto-inhibiting phenomena in the oxidation process of organic contaminants by permanganate and manganese dioxide under acidic conditions:Effects of manganese intermediates/products[J]. Royal Society of Chemistry Advances, 2016, 6(67):62858-62865.
    [33] 李俊, 栾富波, 谢丽, 等. 腐殖酸还原Fe(Ⅲ)的影响因素研究[J]. 环境污染与防治, 2009, 31(2):23-30.

    LI J,LUAN F B, XIE L, et al. A study of Fe(Ⅲ) reduction by humic acid[J]. Environmental Pollution and Control, 2009, 31(2):23-30(in Chinese).

    [34] OLDHAM V E, MUCCI A, TEBO B M, et al. Soluble Mn(Ⅲ)-L complexes are abundant in oxygenated waters and stabilized by humic ligands[J]. Geochimica et Cosmochimica Acta, 2017, 199:238-246.
    [35] SUN B, GUAN L X, FANG J Y, et al. Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants:The involvement of Mn(Ⅲ)[J]. Environmental Science & Technology, 2015, 49:12414-12421.
    [36] CHEN J B, SUN P Z, ZHANG Y L, et al. Multiple Roles of Cu(Ⅱ) in catalyzing hydrolysis and oxidation of β-Lactam antibiotics[J]. Environmental Science & Technology, 2016, 50(22):12156-12165.
    [37] KARLESA A, DE VERA G A D, DODD M C, et al. Ferrate(Ⅳ) oxidation of β-lactam antibiotics:Reaction kinetics, antibacterial activity changes, and transformation products[J]. Environmental Science & Technology, 2014, 48(17):10380-10389.
    [38] HSU M H, KUO T H, CHEN Y E, et al. Substructure reactivity affecting the manganese dioxide oxidation of cephalosporins[J]. Environmental Science & Technology, 2018, 52(16):9188-9195.
    [39] YAMAGUCHI K S, SAWYER D T. The redox chemistry of manganese(Ⅲ) and (Ⅳ) complexes[J]. Israel Journal of Chemistry, 1985, 25(2):164-176.
    [40] KONDALKAR V V, MALI S S, MANE R M, et al. Photoelectrocatalysis of cefotaxime using nanostructured TiO2 photoanode:Identification of the degradation products and determination of the toxicity level[J]. Industrial & Engineering Chemistry Research, 2014, 53(47):18152-18162.
  • 加载中
计量
  • 文章访问数:  1839
  • HTML全文浏览数:  1839
  • PDF下载数:  28
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-01-30

水中Mn(Ⅲ)介导的头孢哌酮钠转化机制

    通讯作者: 李瑞萍, E-mail: rpli_ctgu@163.com
  • 1. 三峡大学生物与制药学院, 宜昌, 443002;
  • 2. 三峡库区生态环境教育部工程研究中心(三峡大学), 宜昌, 443002;
  • 3. 三峡大学水利与环境学院, 宜昌, 443002
基金项目:

国家自然科学基金(21577077)和三峡大学硕士学位论文培优基金(2019SSPY148)资助.

摘要: 一些常见金属离子如Cu(Ⅱ)、Fe(Ⅲ)或Mn(Ⅱ)等对水中头孢菌素类抗生素(CEPs)水解具有促进作用,已有研究证实高锰酸钾/亚硫酸氢钠(PM/BS)体系生成的Mn(Ⅲ)能高效氧化去除多种有机污染物,而Mn(Ⅲ)对CEPs的转化作用尚不明确.本研究以头孢哌酮钠(CFZ)为目标化合物,考察了Mn(Ⅲ)介导对水中CEPs的转化作用,研究了PM和BS浓度、初始pH、共存组分等因素对Mn(Ⅲ)转化CFZ的影响,采用超高效液相色谱串联质谱法(UPLC-MS/MS)对CFZ的转化产物进行了分析.结果表明,当PM和BS浓度分别为5.0 μmol·L-1和20 μmol·L-1、反应介质为弱酸性时更有利于Mn(Ⅲ)对CFZ的转化.加入Mg2+会促进PM/BS体系对CFZ的转化,而HCO3-和腐殖酸对CFZ的转化起到抑制作用.通过加入过量焦磷酸盐得出82.2%的CFZ是由于Mn(Ⅲ)介导而降解,根据UPLC-MS/MS分析其降解产物推测,Mn(Ⅲ)介导的CFZ降解主要包括水解和氧化两条路径.该研究阐明了Mn(Ⅲ)在CEPs环境转化中的作用,对深入认识Mn物种及CEPs在环境中的转化规律提供了新的参考价值.

English Abstract

参考文献 (40)

目录

/

返回文章
返回