水中Mn(Ⅲ)介导的头孢哌酮钠转化机制
Mn (Ⅲ)-mediated transformation of cefoperazone sodium in water: A Proposed Transformation Mechanism
-
摘要: 一些常见金属离子如Cu(Ⅱ)、Fe(Ⅲ)或Mn(Ⅱ)等对水中头孢菌素类抗生素(CEPs)水解具有促进作用,已有研究证实高锰酸钾/亚硫酸氢钠(PM/BS)体系生成的Mn(Ⅲ)能高效氧化去除多种有机污染物,而Mn(Ⅲ)对CEPs的转化作用尚不明确.本研究以头孢哌酮钠(CFZ)为目标化合物,考察了Mn(Ⅲ)介导对水中CEPs的转化作用,研究了PM和BS浓度、初始pH、共存组分等因素对Mn(Ⅲ)转化CFZ的影响,采用超高效液相色谱串联质谱法(UPLC-MS/MS)对CFZ的转化产物进行了分析.结果表明,当PM和BS浓度分别为5.0 μmol·L-1和20 μmol·L-1、反应介质为弱酸性时更有利于Mn(Ⅲ)对CFZ的转化.加入Mg2+会促进PM/BS体系对CFZ的转化,而HCO3-和腐殖酸对CFZ的转化起到抑制作用.通过加入过量焦磷酸盐得出82.2%的CFZ是由于Mn(Ⅲ)介导而降解,根据UPLC-MS/MS分析其降解产物推测,Mn(Ⅲ)介导的CFZ降解主要包括水解和氧化两条路径.该研究阐明了Mn(Ⅲ)在CEPs环境转化中的作用,对深入认识Mn物种及CEPs在环境中的转化规律提供了新的参考价值.Abstract: The cephalosporin antibiotics (CEPs) are susceptible to be hydrolyzed by common metal ions such as Cu(Ⅱ), Fe(Ⅲ) or Mn(Ⅱ) in water. It has been demonstrated that potassium permanganate/sodium bisulfite (PM/BS) system could generate Mn(Ⅲ), which could be used to remove organic contaminants efficiently, but its role in the transformation of CEPs was still unknown. In this study, Mn(Ⅲ)-mediated transformation of CEPs in aqueous solution was studied using cefoperazone sodium (CFZ) as the target compound, and the effects of PM and BS dosage, initial pH value, and the coexisting components on the degradation efficiency were investigated. CFZ degradation products were analyzed by ultrahigh performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The results showed that the favorite conditions for Mn(Ⅲ)-mediated transformation of CFZ were PM concentration as 5.0 μmol·L-1 and BS concentration 20 μmol·L-1 under weakly acidic condition. Mg2+ addition could accelerate the CFZ removal efficiency in PM/BS system, while humic acid and HCO3- played an inhibitory role in the CFZ degradation. The contribution of Mn(Ⅲ)-mediation to CFZ degradation was up to 82.2%, which was determined by adding excessive pyrophosphate in the PM/BS system. Based on the transformation products identified by UPLC-MS/MS, Mn(Ⅲ)-mediation led to hydrolysis and oxidation of CFZ. This study elucidated the role of Mn(Ⅲ) in the environmental transformation of cephalosporin antibiotics which had not been recognized before. This new discovery further clarified our understanding of Mn species and its role in the environmental fate of cephalosporin antibiotics.
-
Key words:
- Mn (Ⅲ) /
- cefoperazone sodium /
- transformation mechanism
-
-
[1] 王冰, 孙成, 胡冠九. 环境中抗生素残留潜在风险及其研究进展[J]. 环境科学与技术, 2007, 30(3):108-111. WANG B, SUN C, HU G J. Residue antibiotics in environment:Potential risks and relevant studies[J]. Environmental Science & Technology, 2007, 30(3):108-111(in Chinese).
[2] 高立红, 史亚利, 厉文辉, 等. 抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013, 32(9):1619-1633. GAO L H, SHI Y L, LI W H, et al. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry, 2013, 32(9):1619-1633(in Chinese).
[3] WANG X H, LIN A Y. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity[J]. Environmental Science & Technology, 2012, 46(22):12417-12426. [4] 李媛, 魏东斌, 杜宇国. 锰氧化物对有机污染物的转化机制研究进展[J]. 环境化学, 2013, 32(7):1288-1299. LI Y, WEI D B, DU Y G. A review on the transformation mechanisms of typical organic pollutants by manganese oxide[J]. Environmental Chemistry, 2013, 32(7):1288-1299(in Chinese).
[5] SU J M. DENG L, HUANG L B, et al. Catalytic oxidation of manganese(Ⅱ) by multicopper oxidase CueO and characterization of the biogenic Mn oxide[J]. Water Research, 2014, 56:304-313. [6] SUN B, XIAO Z J, DONG H Y, et al. Bisulfite triggers fast oxidation of organic pollutants by colloidal MnO2[J]. Journal of Hazardous Materials, 2019, 363:412-420. [7] IM J, PREVATTE C W, CAMPAGNA S R, et al. Identification of 4-hydroxycumyl alcohol as the major MnO2-mediated bisphenol A transformation product and evaluation of its environmental fate[J]. Environmental Science & Technology, 2015, 49(10):6214-6221. [8] ZHANG H C, HUANG C H. Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide[J]. Environmental Science & Technology, 2005, 39(12):4474-4483. [9] TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic manganese oxides:Properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1):287-328. [10] DAVID H, STEVEN E. Oxidation of manganese by spores of a marine bacillus:Kinetic and thermodynamic considerations[J]. Geochimica et Cosmochimica Acta, 1986, 50(8):1819-1824. [11] ZHANG Y, TANG Y K, QIN Z Y, et al. A novel manganese oxidizing bacterium-Aeromonas hydrophila strain DS02:Mn(Ⅱ) oxidization and biogenic Mn oxides generation[J]. Journal of Hazardous Materials, 2019, 367:539-545. [12] SUN B, BAO Q Q, GUAN X H. Critical role of oxygen for rapid degradation of organic contaminants in permanganate/bisulfite process[J]. Journal of Hazardous Materials, 2018, 352:157-164. [13] 孙波. NaHSO3活化KMnO4快速氧化水中微量有机污染物的效能与机理[D]. 哈尔滨:哈尔滨工业大学, 2017:4-124. SUN B. Kinetics and mechanisms on the fast degradation of micro-organic contaminants by bisulfite activated permanganate[D]. Harbin:Harbin Institute of Technology, 2017:4 -124(in Chinese).
[14] ZHU Y T, YANG X, QIAO J L, et al. Effects of KMnO4/NaHSO3 pre-oxidation on the formation potential of disinfection by-products during subsequent chlorination[J]. Chemical Engineering Journal, 2019, 372:825-835. [15] ZHONG S F, ZHANG H C. New insight into the reactivity of Mn(Ⅲ) in bisulfite/permanganate for organic compounds oxidation:The catalytic role of bisulfite and oxygen[J]. Water Research, 2019, 148:198-207. [16] RIBEIRO A R, SURES B, SCHMIDT T C. Cephalosporin antibiotics in the aquatic environment:A critical review of occurrence, fate, ecotoxicity and removal technologies[J]. Environmental Pollution, 2018, 241:1153-1166. [17] GENSMANTEL N P, PROCTOR P, PAGE M I. Metal-ion catalysed hydrolysis of some β-lactam antibiotics[J]. Journal of the Chemical Society Perkin Transactions, 1980, 11:1725-1732. [18] NAVARRO P G, BLAZQUEZ I H, OSSO B Q, et al. Penicillin degradation catalysed by Zn(Ⅱ) ions in methanol[J]. International Journal of Biological Macromolecules, 2003, 33(4):159-166. [19] CHEN J B, WANG Y, QIAN Y J, et al. Fe(Ⅲ)-promoted transformation of β-lactam antibiotics:Hydrolysis vs oxidation[J]. Journal of Hazardous Materials, 2017, 335:117-124. [20] CHEN J B, SUN P Z, ZHOU X F, et al. Cu(Ⅱ)-catalyzed transformation of benzylpenicillin revisited:The overlooked oxidation[J]. Environmental Science & Technology, 2015, 49(7):4218-4225. [21] HUANG T Y, FANG C, QIAN Y J, et al. Insight into Mn(Ⅱ)-mediated transformation of β-lactam antibiotics:The overlooked hydrolysis[J]. Chemical Engineering Journal, 2017, 321:662-668. [22] CHEN W R, HUANG C H. Transformation of tetracyclines mediated by Mn(Ⅱ) and Cu(Ⅱ) ions in the presence of oxygen[J]. Environmental Science & Technology, 2009, 43(2):401-407. [23] ZHANG H C, HUANG C H. Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide[J]. Environmental Science & Technology, 2005, 39(12):4474-4483. [24] MITCHELL S M, ULLMAN J L, TEEL A L, et al. pH and temperature effects on the hydrolysis of three β-lactam antibiotics:Ampicillin, cefalotin and cefoxitin[J]. Science of The Total Environment, 2014, 466/467:547-555. [25] LI L P, WEI D B, WEI G H, et al. Oxidation of cefazolin by potassium permanganate:Transformation products and plausible pathways[J]. Chemosphere, 2016, 149:279-285. [26] XU L, DONG H Y, XU K, et al. Accelerated degradation of pesticide by permanganate oxidation:A comparison of organic and inorganic activations[J]. Chemical Engineering Journal, 2019, 369:1119-1128. [27] QIAN Y J, GAO P, XUE G, et al. Oxidation of cefalexin by permanganate:Reaction kinetics, mechanism, and residual antibacterial activity[J]. Molecules, 2018, 23(8):1-12. [28] CHEN J, QU R J, PAN X X, et al. Oxidative degradation of triclosan by potassium permanganate:Kinetics, degradation products, reaction mechanism, and toxicity evaluation[J]. Water Research, 2016, 103:215-223. [29] CAGNARDI P, VILLA R, MALLO M, et al. Cefoperazone sodium preparation behavior after intramammary administration in healthy and infected cows[J]. American Dairy Science Association, 2010, 93(9):4105-4110. [30] GAO Y, JIANG J, ZHOU Y, et al. Unrecognized role of bisulfite as Mn(Ⅲ) stabilizing agent in activating permanganate (Mn(Ⅶ)) for enhanced degradation of organic contaminants[J]. Chemical Engineering Journal, 2017, 327:418-422. [31] SUN B, LI D, LINGHU W S, et al. Degradation of ciprofloxacin by manganese(Ⅲ) intermediate:Insight into the potential application of permanganate/bisulfite process[J]. Chemical Engineering Journal, 2018, 339:144-152. [32] SUN B, RAO D D, SUN Y H, et al. Auto-accelerating and auto-inhibiting phenomena in the oxidation process of organic contaminants by permanganate and manganese dioxide under acidic conditions:Effects of manganese intermediates/products[J]. Royal Society of Chemistry Advances, 2016, 6(67):62858-62865. [33] 李俊, 栾富波, 谢丽, 等. 腐殖酸还原Fe(Ⅲ)的影响因素研究[J]. 环境污染与防治, 2009, 31(2):23-30. LI J,LUAN F B, XIE L, et al. A study of Fe(Ⅲ) reduction by humic acid[J]. Environmental Pollution and Control, 2009, 31(2):23-30(in Chinese).
[34] OLDHAM V E, MUCCI A, TEBO B M, et al. Soluble Mn(Ⅲ)-L complexes are abundant in oxygenated waters and stabilized by humic ligands[J]. Geochimica et Cosmochimica Acta, 2017, 199:238-246. [35] SUN B, GUAN L X, FANG J Y, et al. Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants:The involvement of Mn(Ⅲ)[J]. Environmental Science & Technology, 2015, 49:12414-12421. [36] CHEN J B, SUN P Z, ZHANG Y L, et al. Multiple Roles of Cu(Ⅱ) in catalyzing hydrolysis and oxidation of β-Lactam antibiotics[J]. Environmental Science & Technology, 2016, 50(22):12156-12165. [37] KARLESA A, DE VERA G A D, DODD M C, et al. Ferrate(Ⅳ) oxidation of β-lactam antibiotics:Reaction kinetics, antibacterial activity changes, and transformation products[J]. Environmental Science & Technology, 2014, 48(17):10380-10389. [38] HSU M H, KUO T H, CHEN Y E, et al. Substructure reactivity affecting the manganese dioxide oxidation of cephalosporins[J]. Environmental Science & Technology, 2018, 52(16):9188-9195. [39] YAMAGUCHI K S, SAWYER D T. The redox chemistry of manganese(Ⅲ) and (Ⅳ) complexes[J]. Israel Journal of Chemistry, 1985, 25(2):164-176. [40] KONDALKAR V V, MALI S S, MANE R M, et al. Photoelectrocatalysis of cefotaxime using nanostructured TiO2 photoanode:Identification of the degradation products and determination of the toxicity level[J]. Industrial & Engineering Chemistry Research, 2014, 53(47):18152-18162. -

计量
- 文章访问数: 2439
- HTML全文浏览数: 2439
- PDF下载数: 99
- 施引文献: 0