内蒙古工农牧区土壤中NBFRs和DPs的水平、分布特征及来源

张爱芹, 陈易静, 柳晨, 娄新宇, 刘名卉, 金军. 内蒙古工农牧区土壤中NBFRs和DPs的水平、分布特征及来源[J]. 环境化学, 2020, (12): 3495-3503. doi: 10.7524/j.issn.0254-6108.2020022702
引用本文: 张爱芹, 陈易静, 柳晨, 娄新宇, 刘名卉, 金军. 内蒙古工农牧区土壤中NBFRs和DPs的水平、分布特征及来源[J]. 环境化学, 2020, (12): 3495-3503. doi: 10.7524/j.issn.0254-6108.2020022702
ZHANG Aiqin, CHEN Yijing, LIU Chen, LOU Xinyu, LIU Minghui, JIN Jun. NBFRs and DPs in the soil of industrial, agricultural and pastoral areas in Inner Mongolia:Level, distribution and source[J]. Environmental Chemistry, 2020, (12): 3495-3503. doi: 10.7524/j.issn.0254-6108.2020022702
Citation: ZHANG Aiqin, CHEN Yijing, LIU Chen, LOU Xinyu, LIU Minghui, JIN Jun. NBFRs and DPs in the soil of industrial, agricultural and pastoral areas in Inner Mongolia:Level, distribution and source[J]. Environmental Chemistry, 2020, (12): 3495-3503. doi: 10.7524/j.issn.0254-6108.2020022702

内蒙古工农牧区土壤中NBFRs和DPs的水平、分布特征及来源

    通讯作者: 金军, E-mail: junjin3799@126.com
  • 基金项目:

    中央民族大学生态学一流学科建设项目(Yldxxk201819)资助.

NBFRs and DPs in the soil of industrial, agricultural and pastoral areas in Inner Mongolia:Level, distribution and source

    Corresponding author: JIN Jun, junjin3799@126.com
  • Fund Project: Supported by First-class Discipline Construction Project for Ecology (Yldxxk201819).
  • 摘要: 本文检测了我国内蒙古地区工业区、农业区、牧区的33个土壤样品中6种新型溴代阻燃剂(NBFRs)和2种德克隆(DPs)浓度水平,探讨它们在不同功能区的分布特征和主要来源.结果显示,∑6NBFRs和∑2DPs浓度范围分别是1.06—981.51 pg·g-1 dw(干重)、ND—352.53 pg·g-1 dw,与国内外相比均处于较低的污染水平.NBFRs平均浓度表现出工业区 > 农业区 > 牧区的趋势,而不同类型表现出TBPH > PBBA > HBB > PBT > PBBz > PBEB的趋势.DPs平均浓度在工业区最高.研究发现,HBB在迁移过程容易发生降解,PBBA、TBPH、DPs迁移能力偏弱,主要影响污染源的周边环境,PBBz和PBT迁移能力较强,主要来自于低海拔地区的远距离输送,并已成为内蒙古地区的普遍污染物质.
  • 加载中
  • [1] 郭志明,刘螟,申铠君,等.太原市PM2.5中溴代阻燃剂的污染特征及人体暴露水平[J].生态毒理学报,2016,11(2):325-329.

    GUO Z M, LIU D, SHEN K J, et a1. Brominated flame retardants in PM2.5 in the urban of Taiyuan:Characteristics of pollution and human exposure[J]. Asian Journal of Ecotoxicology, 2016, 11(2):325-329(in Chinese).

    [2] JI X W, HUANG Y, ZHU H X, et al. Chlorinated flame retardant dechlorane plus:Environmental pollution in China[J]. Environmental Reviews, 2018, 26(3):273-285.
    [3] WEIL E D, LEVCHIK S. Current practice and recent commercial developments in flame retardancy of polyamides[J]. Journal of Fire Sciences, 2004, 22(3):251-264.
    [4] COVACI A, HARRAD S, ABDALLAH M A E, et al. Novel brominated flame retardants:A review of their analysis, environmental fate and behaviour[J]. Environment International, 2011, 37(2):532-556.
    [5] EZECHIAS M, COVINO S, CAJTHAML T. Ecotoxicity and biodegradability of new brominated flame retardants:A review[J]. Ecotoxicology and Environmental Safety, 2014, 110:153-167.
    [6] HOH E, ZHU L, HITES R A. Dechlorane plus, a chlorinated flame retardant, in the Great Lakes[J]. Environmental Science & Technology, 2006, 40(4):1184-1189.
    [7] LA GUARDIA M J, HALE R C, HARVEY E, et al. In situ accumulation of HBCD, PBDEs, and several alternative flame-retardants in the Bivalve (Corbicula fluminea) and Gastropod (Elimia proxima)[J]. Environmental Science & Technology, 2012, 46(11):5798-5805.
    [8] SAUNDER D M V, PODAIMA M, CODING G, et al. A mixture of the novel brominated flame retardants TBPH and TBB affects fecundity and transcript profiles of the HPGL-axis in Japanese medaka[J]. Aquatic Toxicology, 2015, 158:14-21.
    [9] WU J, CHEN X, WU S, et al. Dechlorane plus flame retardant in a contaminated frog species:Biomagnification and isomer-specific transfer from females to their eggs[J]. Chemosphere, 2018, 211:218-225.
    [10] 茹淑玲,贾慧凝,李鑫,等,室内环境中通过灰尘摄入和手-口接触带来的阻燃剂人体暴露风险[J].环境化学, 2019,38(10):2247-2255.

    RU S L, JIA H N, LI X, et al. Human exposure to flame retardants via dust ingestion and hand-to-mouth contact in indoor environment[J]. Environmental Chemistry, 2019, 38(10):2247-2255.

    [11] SUN J, WU Y, TAO N, et al. Dechlorane plus in greenhouse and conventional vegetables:Uptake, translocation, dissipation and human dietary exposure[J]. Environmental Pollution, 2019, 244:667-674.
    [12] YADAV I C, DEVI N L, LI J, et al. Environmental concentration and atmospheric deposition of halogenated flame retardants in soil from Nepal:Source apportionment and soil-air partitioning[J]. Environmental Pollution, 2018, 233:642-654.
    [13] LI H, LA GUARDIA M J, LIU H, et al. Brominated and organophosphate flame retardants along a sediment transect encompassing the Guiyu, China waste recycling zone[J]. Science of the Total Environment, 2019, 646:58-67.
    [14] HONG W J, JIA H L, DING Y S. Polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs) in multi-matrices from an electronic waste (e-waste) recycling site in Northern China[J]. Journal of Material Cycles and Waste Management, 2018, 20:80-90.
    [15] 赵燕燕,王玲,楼迎华,等,气质联用测定胶州湾北岸潮间带底泥中的新型溴代阻燃剂[J].环境化学,2015, 34(2):339-346.

    ZHAO Y Y, WANG L, LOU Y H, et al. Determination of new brominated flame retardants in the North shore of jiaozhou bay intertidal sediments by gas chromatography mass spectrometry[J]. Environmental Chemistry,2015, 34(2):339-346(in Chinese).

    [16] 杨帆,徐洋,崔勇,等,近30年中国农田耕层土壤有机质含量变化[J].土壤学报,2017,54(5):1047-1056.

    YANG F, XU Y, CUI Y, et al, Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 2017, 54(5):1047-1056(in Chinese).

    [17] 张月鲜,孙向阳,张林,等,我国西北地区不同类型草原土壤有机质的稳定碳同位素特征研究[J].土壤通报,2013, 44(2):348-354.

    ZHANG YX, SUN XY, ZHANG L, et al. A study on the characteristics of soil stable carbon isotope composition in different types of grassland in Northwest China[J]. Chinese Journal of Soil Science, 2013, 44(2), 348-354(in Chinese).

    [18] LI W L, MA W L, ZHANG Z F, et al. Occurrence and source effect of novel brominated flame retardants (NBFRs) in soils from five asian countries and their relationship with PBDEs[J]. Environmental Science & Technology, 2017, 51(19):11126-11135.
    [19] LI P, WU H, LI Q, et al. Brominated flame retardants in food and environmental samples from a production area in China:Concentrations and human exposure assessment[J]. Environmental Monitoring and Assessment, 2015, 87(719):1-11.
    [20] ZHENG Q, NIZZETTO L, LI J, et al. Spatial distribution of old and emerging flame retardants in Chinese forest soils:Sources, trends and processes[J]. Environmental Science & Technology, 2015, 49(5):2904-2911.
    [21] LIU X, BING H J, CHEN Y Z, et al. Brominated flame retardants and dechlorane plus on a remote high mountain of the eastern Tibetan Plateau:Implications for regional sources and environmental behaviors[J]. Environmental Geochemistry and Health, 2018, 40(5):1887-1897.
    [22] LI J, DONG Z, WANG Y, et al. Human exposure to brominated flame retardants through dust in different indoor environments:Identifying the sources of concentration differences in hair from men and women[J]. Chemosphere, 2018, 205:71-79.
    [23] CHEN W, LI J, ZHENG D, et al. Correlations between dechlorane plus concentrations in paired hair and indoor dust samples and differences between dechlorane plus isomer concentrations in hair from males and females[J]. Chemosphere, 2019, 23:378-384.
    [24] WANG D G, YANG M, QI H, et al. An Asia-specific source of dechlorane plus:Concentration, isomer profiles, and other related compounds[J]. Environmental Science & Technology, 2010, 44(17):6608-6613.
    [25] ZHENG J, WANG J, LUO X J, et al. Dechlorane Plus in human hair from an e-waste recycling area in South China:Comparison with dust[J]. Environmental Science & Technology, 2010, 44(24):9298-9303.
    [26] VENIER M, MA Y N, HITES R A. Bromobenzene flame retardants in the great lakes atmosphere[J]. Environmental Science & Technology, 2012, 46(16):8653-8660.
  • 加载中
计量
  • 文章访问数:  2057
  • HTML全文浏览数:  2057
  • PDF下载数:  37
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-27
张爱芹, 陈易静, 柳晨, 娄新宇, 刘名卉, 金军. 内蒙古工农牧区土壤中NBFRs和DPs的水平、分布特征及来源[J]. 环境化学, 2020, (12): 3495-3503. doi: 10.7524/j.issn.0254-6108.2020022702
引用本文: 张爱芹, 陈易静, 柳晨, 娄新宇, 刘名卉, 金军. 内蒙古工农牧区土壤中NBFRs和DPs的水平、分布特征及来源[J]. 环境化学, 2020, (12): 3495-3503. doi: 10.7524/j.issn.0254-6108.2020022702
ZHANG Aiqin, CHEN Yijing, LIU Chen, LOU Xinyu, LIU Minghui, JIN Jun. NBFRs and DPs in the soil of industrial, agricultural and pastoral areas in Inner Mongolia:Level, distribution and source[J]. Environmental Chemistry, 2020, (12): 3495-3503. doi: 10.7524/j.issn.0254-6108.2020022702
Citation: ZHANG Aiqin, CHEN Yijing, LIU Chen, LOU Xinyu, LIU Minghui, JIN Jun. NBFRs and DPs in the soil of industrial, agricultural and pastoral areas in Inner Mongolia:Level, distribution and source[J]. Environmental Chemistry, 2020, (12): 3495-3503. doi: 10.7524/j.issn.0254-6108.2020022702

内蒙古工农牧区土壤中NBFRs和DPs的水平、分布特征及来源

    通讯作者: 金军, E-mail: junjin3799@126.com
  • 中央民族大学 生命与环境科学学院, 北京, 100081
基金项目:

中央民族大学生态学一流学科建设项目(Yldxxk201819)资助.

摘要: 本文检测了我国内蒙古地区工业区、农业区、牧区的33个土壤样品中6种新型溴代阻燃剂(NBFRs)和2种德克隆(DPs)浓度水平,探讨它们在不同功能区的分布特征和主要来源.结果显示,∑6NBFRs和∑2DPs浓度范围分别是1.06—981.51 pg·g-1 dw(干重)、ND—352.53 pg·g-1 dw,与国内外相比均处于较低的污染水平.NBFRs平均浓度表现出工业区 > 农业区 > 牧区的趋势,而不同类型表现出TBPH > PBBA > HBB > PBT > PBBz > PBEB的趋势.DPs平均浓度在工业区最高.研究发现,HBB在迁移过程容易发生降解,PBBA、TBPH、DPs迁移能力偏弱,主要影响污染源的周边环境,PBBz和PBT迁移能力较强,主要来自于低海拔地区的远距离输送,并已成为内蒙古地区的普遍污染物质.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回