不同结构的亲水性离子液体双水相萃取铜

高欣, 范理波, 邓芸, 阮文权. 不同结构的亲水性离子液体双水相萃取铜[J]. 环境化学, 2020, (12): 3504-3510. doi: 10.7524/j.issn.0254-6108.2019083102
引用本文: 高欣, 范理波, 邓芸, 阮文权. 不同结构的亲水性离子液体双水相萃取铜[J]. 环境化学, 2020, (12): 3504-3510. doi: 10.7524/j.issn.0254-6108.2019083102
GAO Xin, FAN Libo, DENG Yun, RUAN Wenquan. Extraction of copper using ionic liquid-based aqueous biphasic systems[J]. Environmental Chemistry, 2020, (12): 3504-3510. doi: 10.7524/j.issn.0254-6108.2019083102
Citation: GAO Xin, FAN Libo, DENG Yun, RUAN Wenquan. Extraction of copper using ionic liquid-based aqueous biphasic systems[J]. Environmental Chemistry, 2020, (12): 3504-3510. doi: 10.7524/j.issn.0254-6108.2019083102

不同结构的亲水性离子液体双水相萃取铜

    通讯作者: 邓芸, E-mail: dengyun@jiangnan.edu.cn
  • 基金项目:

    水体污染控制与治理科技重大专项(2017ZX07204002)和中央高校基本科研业务费专项资金(JUSRP11521)资助.

Extraction of copper using ionic liquid-based aqueous biphasic systems

    Corresponding author: DENG Yun, dengyun@jiangnan.edu.cn
  • Fund Project: Supported by Major Science and Technology Project for Water Pollution Control and Treatment (2017ZX07204002) and Special Fund for Basic Scientific Research Business Cost of Central University (JUSRP11521).
  • 摘要: 铜萃取技术广泛应用于冶金、前处理和水处理等方面,但传统的萃取需要使用大量挥发性有机溶剂.绿色溶剂离子液体可以与无机盐形成双水相,同时具备离子液体萃取和双水相萃取的优点.本试验研究了10种不同结构的亲水性离子液体所形成的双水相体系,不添加其它萃取剂对Cu2+的萃取性能,并用红外光谱法分析了离子液体和Cu2+之间作用力,探究离子液体对Cu2+萃取的机理.实验结果表明,所测试的离子液体双水相对Cu2+的萃取率为90.93%—97.72%.离子液体阳离子的头基种类和侧链长度与Cu2+萃取率间的关系较为复杂.Zn2+或Fe2+共存可提高对Cu2+的萃取率.萃取机理为咪唑环与Cu2+之间产生了配位作用.
  • 加载中
  • [1] CHEN Y, WANG H, PEI Y, et al. A green separation strategy for neodymium (Ⅲ) from cobalt (Ⅱ) and nickel (Ⅱ) using an ionic liquid-based aqueous two-phase system[J]. Talanta, 2018, 182:450-455.
    [2] WANG W, CHEN J, LIU H, et al. Research progress of task-specific ionic liquids used in metal ions extraction[J]. Chinese Journal of Applied Chemistry, 2015, 32(7):733-742.
    [3] 赵文岩,韩萌,戴树桂.离子液体1-甲基-3-己基咪唑六氟磷酸用于水中多环芳烃萃取的研究[J].环境化学,2005,24(4):467-470.

    ZHAO W Y,HAN M,DAI S G. Study on the extraction of polycyclic aromatic hydrocarbons from water by ionic liquid 1-methyl-3-hexylimidazolium hexafluorophosphate[J]. Environmental Chemistry, 2005,24(4):467-470(in Chinese).

    [4] 贾立明,陈鑫,赵伟,等.离子液体双水相萃取-HPLC-MS/MS法测定环境水样中痕量3种酞酸脂类污染物[J].环境化学,2014,33(12):2228-2230.

    JIA L M,CHEN X,ZHAO W, et al. Determination of trace three phthalate lipid pollutants in environmental water samples by HPLC-MS/MS with two-phase extraction of ionic liquid[J]. Environmental Chemistry, 2014,33(12):2228-2230(in Chinese).

    [5] MAHMOUD M E. Surface loaded1-methyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide[EMIM+Tf2N-] hydrophobic ionic liquid on nano-silica sorbents for removal of lead from water samples[J]. Desalination, 2011, 266(1/3):119-127.
    [6] 李长平,辛宝平,徐文国.离子液体对Cu(Ⅱ)和Ni(Ⅱ)的萃取性能[J].大连海事大学学报,2008, 34(3):17-20.

    LI C P,XIN B P,XU W G.Extraction ability of ionic liquids for Cu(Ⅱ)and Ni(Ⅱ)[J]. Journal of Dalian Maritime University, 2008, 34(3):17-20(in Chinese).

    [7] 赵瑰施,张玲,万玉秋,等.咪唑类离子液体在β沸石上的吸附[J].环境化学,2016,35(8):1649-1656.

    ZHAO W S,ZHANG L,WAN Y Q, et al. Adsorption of imidazole ionic liquids on β zeolite[J]. Environmental Chemistry, 2016,35(8):1649-1656(in Chinese).

    [8] SWATLOSKI R P, HOLBREY J D, ROGERS R D. Ionic liquids are not always green:Hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate[J]. Green Chemistry,2003,5(4):361-363.
    [9] 姜大雨,朱红,王良,等.离子液体双水相萃取的应用研究进展[J].化学试剂,2010,32(9):805-810.

    JIANG D Y,ZHU H,WANG L, et al. Progress in the application of ionic liquid two-phase extraction[J]. Chemical Reagents, 2010,32(9):805-810(in Chinese).

    [10] 邓凡政,傅东祈,朱陈银.离子液体双水相萃取分光光度法测定铜[J].冶金分析,2008,28(6):29-32.

    DENG F Z,FU D Q,ZHU C Y. Determination of copper by ion-liquid two-phase extraction spectrophotometry[J]. Metallurgical Analysis, 2008,28(6):29-32(in Chinese).

    [11] 曾云,覃事栋,陈腾,等.乙醇-硫酸铵双水相萃取镉-碘化钾-丁基罗丹明B离子缔合物[J].光谱实验室,2012,29(5):2963-2966.

    ZENG Y,TAN S D,CHEN T, et al. Ethanol ammonium sulfate aqueous two-phase extraction of cadmium potassium iodide butyl rhodamine B ion association complex[J]. Chinese Journal of Spectroscopy Laboratory, 2012,29(5):2963-2966(in Chinese).

    [12] ZHENG Y, TONG Y, WANG S, et al. Mechanism of gold (Ⅲ) extraction using a novel ionic liquid-based aqueous two phase system without additional extractants[J]. Separation & Purification Technology, 2015, 154:123-127.
    [13] AKAMA Y, SALI A. Extraction mechanism of Cr(Ⅵ) on the aqueous two-phase system of tetrabutylammonium bromide and (NH4)2SO4 mixture[J]. Talanta, 2002, 57(4):681-690.
    [14] DEPUYDT D, DEHAEN W, BINNEMANS K. Solvent extraction of scandium(Ⅲ) by an aqueous biphasic system with a nonfluorinated functionalized ionic liquid[J]. Industrial & Engineering Chemistry Research, 2015, 54(36):8988-8996.
    [15] CHEN H, ZHENG Z, SHI W. Investigation on the kinetics of iron ore fines reduction by CO in a micro-fluidized bed[J]. Procedia Engineering, 2015, 102:1726-1735.
    [16] ZHANG T, LEI C, ZHU Q. Reduction of fine iron ore via a two-step fluidized bed direct reduction process[J]. Powder Technology, 2014, 254:1-11.
  • 加载中
计量
  • 文章访问数:  1800
  • HTML全文浏览数:  1800
  • PDF下载数:  27
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-31
高欣, 范理波, 邓芸, 阮文权. 不同结构的亲水性离子液体双水相萃取铜[J]. 环境化学, 2020, (12): 3504-3510. doi: 10.7524/j.issn.0254-6108.2019083102
引用本文: 高欣, 范理波, 邓芸, 阮文权. 不同结构的亲水性离子液体双水相萃取铜[J]. 环境化学, 2020, (12): 3504-3510. doi: 10.7524/j.issn.0254-6108.2019083102
GAO Xin, FAN Libo, DENG Yun, RUAN Wenquan. Extraction of copper using ionic liquid-based aqueous biphasic systems[J]. Environmental Chemistry, 2020, (12): 3504-3510. doi: 10.7524/j.issn.0254-6108.2019083102
Citation: GAO Xin, FAN Libo, DENG Yun, RUAN Wenquan. Extraction of copper using ionic liquid-based aqueous biphasic systems[J]. Environmental Chemistry, 2020, (12): 3504-3510. doi: 10.7524/j.issn.0254-6108.2019083102

不同结构的亲水性离子液体双水相萃取铜

    通讯作者: 邓芸, E-mail: dengyun@jiangnan.edu.cn
  • 1. 江南大学环境与土木工程学院, 无锡, 214000;
  • 2. 四川省核工业辐射测试防护院(核应急技术支持中心), 成都, 610500
基金项目:

水体污染控制与治理科技重大专项(2017ZX07204002)和中央高校基本科研业务费专项资金(JUSRP11521)资助.

摘要: 铜萃取技术广泛应用于冶金、前处理和水处理等方面,但传统的萃取需要使用大量挥发性有机溶剂.绿色溶剂离子液体可以与无机盐形成双水相,同时具备离子液体萃取和双水相萃取的优点.本试验研究了10种不同结构的亲水性离子液体所形成的双水相体系,不添加其它萃取剂对Cu2+的萃取性能,并用红外光谱法分析了离子液体和Cu2+之间作用力,探究离子液体对Cu2+萃取的机理.实验结果表明,所测试的离子液体双水相对Cu2+的萃取率为90.93%—97.72%.离子液体阳离子的头基种类和侧链长度与Cu2+萃取率间的关系较为复杂.Zn2+或Fe2+共存可提高对Cu2+的萃取率.萃取机理为咪唑环与Cu2+之间产生了配位作用.

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回