多通道网状电极电化学预处理垃圾渗滤液反渗透浓缩液

晏超群, 程治良, 全学军, 封承飞, 程赓. 多通道网状电极电化学预处理垃圾渗滤液反渗透浓缩液[J]. 环境化学, 2021, (2): 603-613. doi: 10.7524/j.issn.0254-6108.2020030801
引用本文: 晏超群, 程治良, 全学军, 封承飞, 程赓. 多通道网状电极电化学预处理垃圾渗滤液反渗透浓缩液[J]. 环境化学, 2021, (2): 603-613. doi: 10.7524/j.issn.0254-6108.2020030801
YAN Chaoqun, CHENG Zhiliang, QUAN Xuejun, FENG Chengfei, CHENG Geng. Electrochemical pretreatment of landfill leachate RO concentrate with multi-channel mesh electrodes[J]. Environmental Chemistry, 2021, (2): 603-613. doi: 10.7524/j.issn.0254-6108.2020030801
Citation: YAN Chaoqun, CHENG Zhiliang, QUAN Xuejun, FENG Chengfei, CHENG Geng. Electrochemical pretreatment of landfill leachate RO concentrate with multi-channel mesh electrodes[J]. Environmental Chemistry, 2021, (2): 603-613. doi: 10.7524/j.issn.0254-6108.2020030801

多通道网状电极电化学预处理垃圾渗滤液反渗透浓缩液

    通讯作者: 程治良, E-mail: purper@cqut.edu.cn
  • 基金项目:

    重庆市生活垃圾资源化处理协同创新中心项目(Shljzyh2017-003)和重庆市基础与前沿研究计划(cstc2015jcyjA20005,cstc2020jcyjmsxmX0308)资助.

Electrochemical pretreatment of landfill leachate RO concentrate with multi-channel mesh electrodes

    Corresponding author: CHENG Zhiliang, purper@cqut.edu.cn
  • Fund Project: Supported by the Research Funds of Chongqing Collaborative Innovation Center Of Municipal Solid Waste Treatment and Resources Recovery (Shljzyh2017-003) and the Foundation and Frontier Research Project of Chongqing (cstc2015jcyjA20005,cstc2020jcyjmsxmX0308).
  • 摘要: 反渗透(Reverse Osmosis,RO)因出水水质好、运行成本低等优势常用于垃圾渗滤液的处理,但产生的RO浓缩液具有COD高、色度高、盐分高、难降解等特点,其处理存在效果差、能耗和成本均较高等问题.本工作采用氧化钌/氧化铱涂层电极(RuO2/IrO2-Ti)的钛网为阳极,以304不锈钢电极为阴极,设计制作了6通道的电化学反应器,通过电化学氧化处理RO浓缩液,研究考查了电流密度、循环流速、比电极面积等参数对COD去除效果的影响,分析了电化学氧化去除难降解有机物并同时脱盐的过程机理与能耗.结果表明,在电流密度32.89 mA·cm-2,循环流速0.46 cm·s-1,比电极面积65.10 m2·m-3的条件下,电化学氧化处理RO浓缩液3 h,COD去除率可达68.0%,TOC去除率可达40.6%,脱盐率可达72.1%,去除单位质量COD能耗仅为常规的板状电极电化学反应器的25.5%.本工作可为垃圾渗滤液RO浓缩液的预处理提供新思路.
  • 加载中
  • [1] LUO H, ZENG Y, CHENG Y, et al. Recent advances in municipal landfill leachate:A review focusing on its characteristics, treatment, and toxicity assessment[J]. Science of The Total Environment, 2020, 703:135468.
    [2] REN X, SONG K, XIAO Y, et al. Effective treatment of spacer tube reverse osmosis membrane concentrated leachate from an incineration power plant using coagulation coupled with electrochemical treatment processes[J]. Chemosphere, 2020, 244:125479.
    [3] 王云海, 张瑞娜, 楼紫阳, 等. Fenton氧化处理垃圾膜滤浓缩液[J]. 环境化学, 2017, 36(5):1104-1111.

    WANG Y H, ZHANG R N, LOU Z Y, et al. Fenton oxidation process of concentrated landfill leachate[J]. Environmental Chemistry, 2017, 36(5):1104-1111(in Chinese).

    [4] SHI J, DANG Y, QU D, et al. Effective treatment of reverse osmosis concentrate from incineration leachate using direct contact membrane distillation coupled with a NaOH·PAM pre-treatment process[J]. Chemosphere, 2019, 220:195-203.
    [5] FERNADES A, LABIADH L, CIRIACO L, et al. Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate:Evaluation of operational parameters[J]. Chemosphere, 2017, 184:1223-1229.
    [6] ZHAO J, OUYANG F, YANG Y, et al. Degradation of recalcitrant organics in nanofiltration concentrate from biologically pretreated landfill leachate by ultraviolet-Fenton method[J]. Separation and Purification Technology, 2020, 235:116076.
    [7] WANG H, WANG Y, LI X, et al. Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment[J]. Waste Management, 2016, 56:271-279.
    [8] LABIADH L, FERNANDES A, CIRIACO L, et al. Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate[J]. Journal of Environmental Management, 2016, 181:515-521.
    [9] GUWENC S. Optimization of COD removal from leachate nanofiltration concentrate using H2O2/Fe2+ heat-Activated persulfate oxidation processes[J]. Process Safety and Environmental Protection, 2019, 126:7-17.
    [10] CHEN W, GU Z, WEN P, et al. Degradation of refractory organic contaminants in membrane concentrates from landfill leachate by a combined coagulation-ozonation process[J]. Chemosphere, 2019, 217:411-422.
    [11] QIN H, CHEN H. Pretreatment of concentrated leachate by the combination of coagulation and catalytic ozonation with Ce/AC catalyst[J]. Water Science & Technology, 2016, 73(3):511-519.
    [12] ZHOU B, YU Z, WEI Q, et al. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode[J]. Applied Surface Science, 2016, 377:406-415.
    [13] LAZHAR L, ANNABEL F, LURDES C, et al. Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate[J]. Journal of Environmental Management, 2016, 181:515-521.
    [14] QUAN X, CHENG Z, CHEN B, et al. Electrochemical oxidation of recalcitrant organic compounds in biologically treated municipal solid waste leachate in a flow reactor[J]. Journal of Environmental Sciences, 2013, 25(10):2023-2030.
    [15] 邓阳, 冯传平, 胡伟武, 等. 垃圾渗滤液生化出水电化学处理技术[J]. 环境化学, 2018, 37(5):1128-1140.

    DENG Y, FENG C P, HU W W, et al. Electrochemical degradation of biologically treated landfill leachate[J]. Environmental Chemistry, 2018, 37(5):1128-1140(in Chinese).

    [16] 国家环境保护局. 水和废水监测分析方法(第四版,增补版)[M]. 北京:中国环境科学出版社, 2011. State Environmental Protection Administration. Water and wastewater monitoring and analysis methods (Fourth Edition, supplement)[M]. Beijing:China Environmental Science Press, 2011(in Chinese).
    [17] 晏云鹏, 全学军, 葛淑萍, 等. 垃圾渗滤液生化出水絮凝纳滤处理及过程机理[J]. 化工学报, 2015, 66(6):2280-2287.

    YAN Y P, QUAN X J, GE S P, et al. Flocculation-nanofiltration treatment of biologically treated leachate and process mechanism[J]. Journal of Chemical Industry and Engineering, 2015, 66(6):2280-2287(in Chinese).

    [18] 晏云鹏, 全学军, 程治良, 等. 垃圾焚烧发电厂渗滤液生化出水的催化臭氧氧化处理[J]. 环境工程学报, 2015, 9(1):219-224.

    YAN Y P, QUAN X J, CHENG Z L, et al. Catalytic ozonation of biologically treated leachate from municipal solid waste incineration power plant[J]. Chinese Journal of Environmental Engineering, 2015, 9(1):219-224(in Chinese).

    [19] 谭怀琴, 全学军, 陈波, 等. 电化学处理改善垃圾沥滤液生化出水的微滤性能[J]. 工业水处理, 2013, 33(12):21-24.

    TAN H Q, QUAN X J, CHEN B, et al. Enhancement of micro-filtration capacity for biochemically treated effluent from garbage leachate by electrochemical oxidation process[J]. Industrial Water Treatment, 2013, 33(12):21-24(in Chinese).

    [20] YANG K S, MUL G, MOULIJN J A. Electrochemical generation of hydrogen peroxide using surface area-enhanced Ti-mesh electrodes[J]. Electrochimica Acta, 2007, 52(22):6304-6309.
    [21] KIM J, SONG S. A study on landfill leachate treatment with electrolysis[J]. Journal of the Korean Industrial and Engineering Chemistry, 2001, 12(4):439-443.
    [22] CHIANG L, CHANG J, WEN T. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate[J]. Water Research, 1995, 29(2):671-678.
    [23] 黄利, 万玉山, 蔡强, 等. 电化学氧化组合工艺处理垃圾渗滤液[J]. 环境工程学报, 2016, 10(2):593-598.

    HUANG L, WAN Y S, CAI Q, et al. Treatment of landfill leachate with electrochemical oxidation combined process[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):593-598(in Chinese).

    [24] DENG Y, ENGLEHARDT J. Electrochemical oxidation for landfill leachate treatment[J]. Waste Management. 2007, 27(3):380-388.
    [25] 夏鹏飞, 魏晓云, 刘锐平, 等. 强化混凝-光电氧化组合技术深度处理垃圾渗滤液[J]. 环境科学学报, 2011, 31(1):13-19.

    XIA P F, WEI X Y, LIU R P, et al. Treatment of landfill leachate by an enhanced coagulation and photoelectro-oxidation process[J]. Acta Scientiae Circumstantiae, 2011, 31(1):13-19(in Chinese).

    [26] RAJESHWAR K, IBANEZ J, SWAIN G. Electrochemistry and the environment[J]. Journal of Applied Electrochemistry, 1994, 24(11):1077-1091.
  • 加载中
计量
  • 文章访问数:  2056
  • HTML全文浏览数:  2056
  • PDF下载数:  45
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-08

多通道网状电极电化学预处理垃圾渗滤液反渗透浓缩液

    通讯作者: 程治良, E-mail: purper@cqut.edu.cn
  • 重庆市化工废水处理与污染控制工程技术研究中心, 重庆理工大学化学化工学院, 重庆, 400054
基金项目:

重庆市生活垃圾资源化处理协同创新中心项目(Shljzyh2017-003)和重庆市基础与前沿研究计划(cstc2015jcyjA20005,cstc2020jcyjmsxmX0308)资助.

摘要: 反渗透(Reverse Osmosis,RO)因出水水质好、运行成本低等优势常用于垃圾渗滤液的处理,但产生的RO浓缩液具有COD高、色度高、盐分高、难降解等特点,其处理存在效果差、能耗和成本均较高等问题.本工作采用氧化钌/氧化铱涂层电极(RuO2/IrO2-Ti)的钛网为阳极,以304不锈钢电极为阴极,设计制作了6通道的电化学反应器,通过电化学氧化处理RO浓缩液,研究考查了电流密度、循环流速、比电极面积等参数对COD去除效果的影响,分析了电化学氧化去除难降解有机物并同时脱盐的过程机理与能耗.结果表明,在电流密度32.89 mA·cm-2,循环流速0.46 cm·s-1,比电极面积65.10 m2·m-3的条件下,电化学氧化处理RO浓缩液3 h,COD去除率可达68.0%,TOC去除率可达40.6%,脱盐率可达72.1%,去除单位质量COD能耗仅为常规的板状电极电化学反应器的25.5%.本工作可为垃圾渗滤液RO浓缩液的预处理提供新思路.

English Abstract

参考文献 (26)

目录

/

返回文章
返回