钝化剂对镉污染土壤修复效果及青菜生理效应影响
Effects of amendments on remediation of cadmium-contaminated soil and physiological characteristics of pakchoi
-
摘要: 采用盆栽试验方法,研究海泡石、骨炭粉及二者配合施用对镉污染农田土壤的钝化修复效果以及青菜镉积累和生理生化性质的变化.结果表明,两种钝化剂单施及配施均可以显著提高土壤pH,促进土壤Cd由酸溶态向残渣态转化,降低CaCl2-Cd和TCLP-Cd的含量.与对照相比,海泡石和骨炭粉1:1配施处理,酸溶态Cd含量降低41.03%,残渣态Cd含量升高1.22倍;且CaCl2-Cd和TCLP-Cd含量分别降低59.65%和58.73%.海泡石和骨炭粉施用不同程度的提高土壤养分含量,增加土壤酶活性和微生物数量.与单施海泡石相比,单施骨炭粉及海泡石与骨炭粉1:1配施处理土壤有机碳、速效氮和速效磷含量均显著提高(P<0.05);且单施骨炭粉更能有效地促进土壤脲酶和蔗糖酶活性,增幅分别为91.50%和46.52%,但过氧化氢酶活性及细菌、真菌和放线菌数量无明显差异.添加海泡石和骨炭粉显著降低青菜对Cd的积累,缓解Cd胁迫对青菜的毒害作用,有效促进青菜生长.尤其是海泡石和骨炭粉1:1配施处理,青菜可食部位Cd含量降低53.19%,叶片SOD、POD和CAT活性分别增加65.30%、40.61%和43.35%.Abstract: A pot experiment was conducted to examine the immobilization remediation effects of sepiolite and bone char on soil physical and chemical properties, soil enzyme activity and microbial quantity, Cd accumulation in soil and pakchoi (Brassica chinensis L.). The results indicated that application of sepiolite, bone char and sepiolite combined with bone char all could effectively increase the soil pH, promote the transformation of Cd from acid soluble to residual and decrease the contents of CaCl2-Cd and TCLP-Cd in the tested soil. Compared to the control treatment, the content of acid-soluble Cd was decreased by 41.03% and the residual Cd content increased by 1.22 times. The largest drop for CaCl2-Cd and TCLP-Cd was 59.65% and 58.73%, respectively, in the treatment of sepiolite combined with bone char (1:1). The application of sepiolite and bone char could increase soil nutrients contents, soil enzyme activity and microbial quantity, which contributed to improve the soil environmental quality. Compared to the single sepiolite treatment, the contents of organic carbon, available nitrogen and available phosphorus were significantly increased by single application of bone char and 1:1 combination of bone char and sepiolite. Moreover, bone char could effectively promote soil urease and invertase activities compared to the application of sepiolite, with increases of 91.50% and 46.52%, respectively. However, there was no significant difference in catalase activity and the number of bacteria, fungi and actinomycetes. The application of sepiolite and bone char could effectively reduce the accumulation of Cd in pakchoi, alleviate the toxic effect of Cd stress and promote the growth of pakchoi. In particular, the concentration of Cd in edible parts of pakchoi decreased by 53.19% in the treatment of 1:1 combination of bone char and sepiolite. The activities of SOD, POD and CAT in leaves were increased by 65.30%, 40.61% and 43.35%.
-
Key words:
- sepiolite /
- bone char /
- Cd pollution /
- soil enzyme activity /
- pakchoi /
- immobilization remediation
-
-
[1] 左清青, 王烁康, 赵陈晨, 等. 纳米羟基磷灰石对镉的吸附解吸及对镉污染土壤修复研究[J]. 环境工程, 2017, 35(3):179-183. ZUO Q Q, WANG S K, ZHAO C C, et al. Adsorption and desorption of Cd on nHAP and remediation test on Cd contaminated soil[J]. Environmental Engineering, 2017, 35(3):179-183(in Chinese).
[2] 张迪, 吴晓霞, 丁爱芳, 等. 生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响[J]. 环境化学, 2019, 38(11):2526-2534. ZHANG D, WU X X, DING A F, et al. Effects of hydrated lime and biochar on available Cd and Pb and microbial activity in a contaminated soil[J]. Environmental Chemistry, 2019, 38(11):2526-2534(in Chinese).
[3] 李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报,2014, 23(4):721-728. LI J R, XU Y M, LIN D S, et al. In situ immobilization remediation of heavy metals in contaminated soils:A review[J]. Ecology and Environmental Sciences, 2014, 23(4):721-728(in Chinese).
[4] 胡红青, 黄益宗, 黄巧云, 等. 农田土壤重金属污染化学钝化修复研究进展[J]. 植物营养与肥料学报, 2017, 23(6):1676-1685. HU H Q, HUANG Y Z, HUANG Q Y, et al. Research progress of heavy metals chemical immobilization in farm land[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6):1676-1685(in Chinese).
[5] 方至萍, 廖敏, 张楠, 等. 施用海泡石对铅-镉在土壤-水稻系统中迁移与再分配的影响[J]. 环境科学, 2017, 38(7):3028-3035. FANG Z P, LIAO M, ZHANG N, et al. Effects of sepiolite application on the migration and redistribution of Pb and Cd in soil rice system in soil with Pb and Cd combined contamination[J]. Environmental Science, 2017, 38(7):3028-3035(in Chinese).
[6] 韩君, 梁学峰, 徐应明, 等. 黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J]. 环境科学学报, 2014, 34(11):2853-2860. HAN J, LIANG X F, XU Y M, et al. In-situ remediation of Cd-polluted paddy soil by clay minerals and their effects on nitrogen, phosphorus and enzymatic activities[J]. Acta Scientiae Circumstantiae, 2014, 34(11):2853-2860(in Chinese).
[7] 李红, 区杰泳, 颜增光, 等.牛骨炭与伊/蒙黏土组配改良剂对土壤中Cd的钝化效果[J]. 环境科学研究, 2018, 31(4):725-731. LI H, OU J Y, YAN Z G, et al. Immobilization of soil cadmium using combined amendments of illite/smectite clay with cattle bone char[J]. Research of Environmental Sciences, 2018, 31(4):725-731(in Chinese).
[8] 刘沙沙, 付建平, 蔡信德, 等. 重金属污染对土壤微生物生态特征的影响研究进展[J]. 生态环境学报, 2018, 27(6):1173-1178. LIU S S, FU J P, CAI X D, et al. Effect of heavy metals pollution on ecological characteristics of soil microbes:A review[J]. Ecology and Environmental Sciences, 2018, 27(6):1173-1178(in Chinese).
[9] 王巧红, 董金霞, 张君, 等. Cd污染对3种类型土壤酶活性及Cd形态分布的影响[J]. 四川农业大学学报, 2017, 35(3):339-344. WANG Q H, DONG J X, ZHANG J, et al. Effects of Cd pollution on soil enzyme activities and Cd forms in three soil types[J]. Journal of Sichuan Agricultural University, 2017, 35(3):339-344(in Chinese).
[10] 郭碧林, 陈效民, 景峰, 等. 外源Cd胁迫对红壤性水稻土微生物量碳氮及酶活性的影响[J]. 农业环境科学学报, 2018, 37(9):1850-1855. GUO B L, CHEN X M, JING F, et al. Effects of exogenous cadmium on microbial biomass and enzyme activity in red paddy soil[J]. Journal of Agro-Environment Science, 2018, 37(9):1850-1855(in Chinese).
[11] 孙约兵, 王朋超, 徐应明, 等. 海泡石对镉-铅复合污染钝化修复效应及其土壤环境质量影响研究[J]. 环境科学,2014, 35(12):4720-4726. SUN Y B, WANG P C, XU Y M. Immobilization remediation of Cd and Pb contaminated soil:remediation potential and soil environmental quality[J]. Environmental Science, 2014, 35(12):4720-4726(in Chinese).
[12] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 1999. LU R K. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press, 1999(in Chinese). [13] GILLMAN G, SUMPTER E. Modification to the compulsive exchange method for measuring exchange characteristics of soils[J]. Soil Research, 1986, 24:61-66. [14] ROMKENS P, GUO H Y, CHU C L, et al. Prediction of cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines[J]. Environmental Pollution, 2009, 157(8-9):2435-2444. [15] CHANG E E, CHANG P C, LU P H, et al. Comparisons of metal leachability for various wastes by extraction and leaching methods[J]. Chemosphere, 2001, 45(1):91-99. [16] JIANG T Y, JIANG J, XU R K, et al. Adsorption of Pb(Ⅱ) on variable charge soils amended with rice-straw derived biochar[J]. Chemosphere, 2012, 89:249-256. [17] STEPNIEWSKA Z, WOLINSKA A, ZIOMEK J. Response of soil catalase activity to chromium contamination[J]. Journal of Environmental Science, 2009, 21:1142-1147. [18] SUN Y B, SUN G H, XU Y M, et al. Assessment of sepiolite for immobilization of cadmium-contaminated soils[J]. Geoderma, 2013, 193-194:149-155. [19] MACKIE K A, MULLER T, ZIKELI S, et al. Long-term copper application in an organic vineyard modifies spatial distribution of soil micro-organisms[J]. Soil Biology and Biochemical, 2013, 65:245-253. [20] 关菘萌. 土壤酶及其研究方法[M]. 北京:农业出版社, 1986. GUAN S Y. Soil enzymes and their research methods[M]. Beijing:Agricultural Press,1986(in Chinese). [21] 姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术[M]. 北京:科学出版社, 2006. YAO H Y, HUANG C Y. Soil microbial ecology and its experimental technology[M]. Beijing:Science Press, 2006(in Chinese). [22] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6):703-707. [23] BROOKES P C, LANDMAN A, PRUDEN G, et al. Chloroform fumigation and release of soil nitrogen:A rapid extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985, 17:837-842. [24] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 北京:高等教育出版社, 2009. ZHANG Z L, QU W J, LI X F. Plant physiology experiment guide[M]. Beijing:Higher Education Press, 2009(in Chinese). [25] YIN X L, XU Y M, HUANG R, et al. Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale[J]. Environmental Science, Processes & Impacts, 2017,19:1563-1570. [26] 纪艺凝, 栾润宇, 王农, 等. 牛骨粉对Cd污染土壤修复效应和土壤肥力的影响[J]. 环境科学学报, 2019, 39(5):1645-1654. JI Y N, LUAN R Y, WANG N,et al. Effect of bovine bone meal on immobilization remediation and fertility of Cd contaminated soil[J]. Acta Scientiae Circumstantiae, 2019, 39(5):1645-1654(in Chinese).
[27] 张迪,李婷,方炫,等. 钝化剂对土壤镉铅有效性和微生物群落多样性影响[J]. 农业环境科学学报, 2019, 38(12):2729-2737. ZHANG D, LI T, FANG X, et al. Effects of passivating agents on the availability of Cd and Pb and functional diversity of the microbial community in contaminated soils[J]. Journal of Agro-Environment Science, 2019, 38(12):2729-2737(in Chinese).
[28] 崔红标, 吴求刚, 张雪, 等.粉煤灰对污染土壤中铜镉的稳定化[J]. 土壤, 2016, 48(5):971-977. CUI H B, WU Q G, ZHANG X, et al. Immobilization of Cu and Cd contaminated soil by coal fly ash[J]. Soils, 2016, 48(5):971-977(in Chinese).
[29] ZHANG D, DING A F. Effects of passivating agents on the availability of Cd and Pb and microbial community function in a contaminated acidic soil[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103:98-105. [30] 刘昭兵, 纪雄辉, 田发祥,等.碱性废弃物及添加锌肥对污染土壤镉生物有效性的影响及机制[J]. 环境科学, 2011, 32(4):1164-1170. LIU Z B, JI X H, TIAN F X, et al. Effects and mechanism of alkaline wastes application and zinc fertilizer addition on Cd bioavailability in contaminated soil[J]. Environmental Science, 2011, 32(4):1164-1170(in Chinese).
[31] 王林, 徐应明, 孙国红,等. 海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究[J]. 生态环境学报,2012, 21(2):314-320. WANG L, XU Y M, SUN G H, et al. Effect and mechanism of immobilization of paddy soil contaminated by cadmium and lead using sepiolite and phosphate[J]. Ecology and Environmental Sciences, 2012, 21(2):314-320(in Chinese).
[32] ZOTIADIS V, ARGYRAKI A, THEOLOGOU E. Pilot scale application of attapulgitic clay for stabilization of toxic elements in contaminated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(5):1-5. [33] 纪艺凝, 徐应明, 王农, 等. 鱼骨粉对土壤Cd污染钝化修复效应及其理化性质的影响[J]. 水土保持学报, 2019, 33(3):312-319. JI Y N, XU Y M, WANG N, et al. Effect of fish bone meal on immobilization remediation of cadmium contaminated soil and its physicochemical properties[J]. Journal of Soil and Water Conservation, 2019, 33(3):312-319(in Chinese).
[34] 张建云. 烟杆生物炭复配海泡石粉对重金属污染土壤的钝化效应及其对烟草种植的影响[D]. 杭州:浙江农林大学, 2018. ZHANG J Y. Immobilization of heavy metals contaminated soil by tobacco stem biochar and sepiolite powder for tobacco cultivation[D]. Hangzhou:Zhejiang Agricultural and Forestry University, 2018(in Chinese). [35] SUN Y B, SUN G H, XU Y M, et al. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium contaminated soils[J]. Journal of Environmental Management, 2016, 166:204-210. [36] 郭荣荣, 袁旭音, 陈红燕, 等. 骨炭对复合污染土壤生物活性的修复及其时间效应[J]. 农业环境科学学报, 2014, 33(5):913-919. GUO R R, YUAN X Y, CHEN H Y, et al. Bone char restoration of biological activities in soil and plant under combined heavy metal pollution[J]. Journal of Agro-Environment Science, 2014, 33(5):913-919(in Chinese).
-

计量
- 文章访问数: 3193
- HTML全文浏览数: 3193
- PDF下载数: 87
- 施引文献: 0