西安市降水化学组成及来源解析

侯思宇, 邱晨晨, 丁铖, 王国祯, 于兴娜. 西安市降水化学组成及来源解析[J]. 环境化学, 2020, (9): 2384-2394. doi: 10.7524/j.issn.0254-6108.2020050501
引用本文: 侯思宇, 邱晨晨, 丁铖, 王国祯, 于兴娜. 西安市降水化学组成及来源解析[J]. 环境化学, 2020, (9): 2384-2394. doi: 10.7524/j.issn.0254-6108.2020050501
HOU Siyu, QIU Chenchen, DING Cheng, WANG Guozhen, YU Xingna. Analysis on chemical composition of precipitation and its source apportionment in Xi'an City[J]. Environmental Chemistry, 2020, (9): 2384-2394. doi: 10.7524/j.issn.0254-6108.2020050501
Citation: HOU Siyu, QIU Chenchen, DING Cheng, WANG Guozhen, YU Xingna. Analysis on chemical composition of precipitation and its source apportionment in Xi'an City[J]. Environmental Chemistry, 2020, (9): 2384-2394. doi: 10.7524/j.issn.0254-6108.2020050501

西安市降水化学组成及来源解析

    通讯作者: 于兴娜, E-mail: xnyu@nuist.edu.cn
  • 基金项目:

    国家自然科学基金(41775154),江苏省"六大人才高峰"项目(JNHB-057)和江苏省研究生实践创新计划(SJCX20_0303)资助.

Analysis on chemical composition of precipitation and its source apportionment in Xi'an City

    Corresponding author: YU Xingna, xnyu@nuist.edu.cn
  • Fund Project: Supported by The National Natural Science Foundation of China (41775154), Six Talent Peaks Project in Jiangsu Province (JNHB-057) and the Postgraduate Practical Innovation Program of JiangsuProvince of China (SJCX20_0303).
  • 摘要: 为研究西安市大气降水污染特征以及来源,对2000—2017年西安市城市站和背景站大气降水组分、沉降以及来源进行对比分析.结果表明,2000—2017年西安市大气降水酸性较弱,城市站的大气降水电导率高于背景站,表明城区降水污染较严重.城市站主要无机酸离子为NO3-和SO42-,主要碱性离子为NH4+和Ca2+,而背景站的主要酸性和碱性离子分别为NO3-和Ca2+.由SO42-和NO3-的比值表明近年来西安市大气污染物排放类型由燃煤型向混合型转变的趋势.从湿沉降量上分析,背景站硫和氮的湿沉降量远小于城市站,表明西安市城市地区的大气硫和氮污染问题更严重.城市站和背景大气降水离子的来源除了扬尘、农业、化石燃料燃烧、机动车排放,城市站和背景站大气降水离子的来源还分别有海盐和生物质燃烧.
  • 加载中
  • [1] YE L, HUANG M, ZHONG B, et al. Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region (China):Characteristics, ecological risk assessment, and source apportionment[J]. Journal of Environmental Sciences, 2018, 8:106-123.
    [2] WANG L Q, SHEN Z X, LU D, et al. Water-soluble components in rainwater over Xi'an in northwest China:Source apportionment and pollution controls effectiveness evaluation[J]. Atmospheric Pollution Research, 2019, 10:395-403.
    [3] PU W W, QUAN W J, MA Z Q, et al. Long-term trend of chemical composition of atmospheric precipitation at a regional background station in Northern China[J]. Science of the Total Environment, 2017, 580:1340-1350.
    [4] MENG Y, ZHAO Y L, Li R, et al. Characterization of inorganic ions in rainwater in the megacity of Shanghai:Spatiotemporal variations and source apportionment[J]. Atmospheric Research, 2019, 222:12-24.
    [5] MIGLIAVACCA D, TEIXEIRA E C, et al. Atmospheric precipitation and chemical composition of an urban site, Guaíba hydrographic basin, Brazil[J]. Atmospheric Environment, 2005, 39(10):1829-1844.
    [6] MEHR M R, KESHSVARZI B, SOROOSHIAN A. Influence of natural and urban emissions on rainwater chemistry at a southwestern Iran coastal site[J]. Science of the Total Environment, 2019, 668:1213-1221.
    [7] VIANA M, KUHLBUSCH T A J, QUEROL X, et al. Source apportionment of particulate matter in Europe:A review of methods and results[J]. Journal of Aerosol Science,2008,39(10):827-849.
    [8] 段雷,周益,杨永森,等. 酸化及化学修复剂对森林土壤有机物淋溶的影响[J].环境科学, 2008, 29(2):440-445.

    DUAN L, ZHOU Y, YANG Y S, et al. Effects of acidification and liming on organic matter leaching in forest soil[J]. Environmental Science, 2008, 29(2):440-445(in Chinese).

    [9] 唐先干, 杨金玲, 张甘霖. 皖南山区降水酸性特征与元素沉降通量[J]. 环境科学, 2009, 30(2):356-361.

    TANG X G, YANG J L, ZHANG G L. Acidity characteristics and element flux of rainwater in the hilly area of South Anhui, China[J]. Environmental Science, 2009, 30(2):356-361(in Chinese).

    [10] CAMARGO J A, ÁLVARO A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems:A global assessment[J]. Environment International, 2006, 32(6):831-849.
    [11] ZHOU X D, ZHI F, WEN J L, et al. Chemical composition of precipitation in Shenzhen, a coastal mega-city in South China:Influence of urbanization and anthropogenic activities on acidity and ionic composition.[J]. Science of the Total Environment, 2019, 662:218-226.
    [12] 张清华, 黎永珊, 于奭, 等.桂林市大气降水的化学组成特征及来源分析[J].环境化学, 2020,39(1):229-239.

    ZHANG Q H, LI Y S, YU S, et al. Characteristics and source analysis of chemical composition of atmospheric precipitation in Guilin City, Southwest China[J]. Environmental Chemistry,2020,39(1):229-239(in Chinese).

    [13] 张栾.上海地区大气降水化学特征及其环境指示意义[D].上海:华东师范大学,2019. ZHANG L. The chemical characteristics and environmental significance of atmospheric precipitation in Shanghai Area[D]. Shanghai:East China Normal University,2019(in Chinese).
    [14] 杜建飞. 上海酸雨物理化学特征及氮湿沉降研究[D].上海:复旦大学,2012. DU J F. Physical and chemical characters of acid rain and nitrogen wet deposition over Shanghai, China[D]. Shanghai:Fudan University,2012(in Chinese).
    [15] 艾东升,郑祥民,周立旻,等.近2年上海市夏季降水地球化学特征研究[J].环境科学, 2010,31(9):2002-2009.

    AI D S, ZHENG X M, ZHOU L M, et al. Geochemical character of precipitation in summer of Shanghai 2008-2009[J]. Environmental Science, 2010,31(9):2002-2009(in Chinese).

    [16] 张林静,张秀英,江洪,等.沈阳市降水化学成分及来源分析[J].环境科学,2013,34(6):2081-2088.

    ZHANG L J, ZHANG X Y, JIANG H, et al. Chemical characteristics and source assessment of rainwater at Shenyang[J]. Environmental Science,2013,34(6):2081-2088(in Chinese).

    [17] 肖红伟,龙爱民,谢露华,等.中国南海大气降水化学特征[J].环境科学,2014,35(2):475-480.

    XIAO H W, LONG A M, XIE L H, et al. Chemical characteristics of precipitation in South China Sea[J]. Environmental Science,2014,35(2):475-480(in Chinese).

    [18] 王小刚. 湿沉降化学组成与大气污染源研究:以西安市长安区为例[D].西安:西北大学,2018. WANG X G. Chemical composition and atmosphere pollutant source of wet deposition in Chang'an District, Xi'an City[D]. Xi'an:Northwest University,2018(in Chinese).
    [19] LU X, LI L Y, LI N, et al. Chemical characteristics of spring rainwater of Xi'an City, NW China[J]. Atmospheric Environment, 2011, 45(28):5058-5063.
    [20] WANG L Q, SHEN Z X, LU D, et al. Water-soluble components in rainwater over Xi'an in northwest China:Source apportionment and pollution controls effectiveness evaluation[J]. Atmospheric Pollution Research, 2018, 10(2):395-403.
    [21] LI L, LAI W, PU J G, et al. Polar organic tracers in PM2.5 aerosols from an inland background area in Southwest China:Correlations between secondary organic aerosol tracers and source apportionment[J]. Journal of Environmental Sciences, 2018, 69(7):281-293.
    [22] RAMADAN Z, SONG X H, HOPKE P K. Identification of sources of phoenix aerosol by positive matrix factorization[J]. Journal of the Air & Waste Management Association, 2000, 50(8):1308-1320.
    [23] REFF A, EBERLY S I, BHAVE P V. Receptor modeling of ambient particulate matter data using positive matrix factorization:Review of existing methods[J]. Journal of the Air & Waste Management Association, 2007, 57(2):146-154.
    [24] 王成龙, 邹欣庆, 赵一飞,等. 基于PMF模型的长江流域水体中多环芳烃来源解析及生态风险评价[J]. 环境科学, 2016, 37(10):3789-3797.

    WANG C L, ZOU X Q, ZHAO Y F, et al. Source apportionment and ecological risk assessment of polycyclic aromatic hydrocarbons in surface water from Yangtze River, China:Based on PMF model[J]. Environmental Science, 2016, 37(10):3789-3797(in Chinese).

    [25] 王文兴, 许鹏举. 中国大气降水化学研究进展[J]. 化学进展, 2009, 21(Z1):266-281.

    WANG W X, XU P J. Research progress in precipitation chemistry in China[J]. Progress in Chemistry, 2009, 21(Z1):266-281(in Chinese).

    [26] HUANG K, ZHUANG G, XU C, et al. The chemistry of the severe acidic precipitation in Shanghai, China[J]. Atmospheric Research, 2008,89(1):149-160.
    [27] 肖致美, 李鹏, 陈魁,等. 天津市大气降水化学组成特征及来源分析[J]. 环境科学研究, 2015, 28(7):1025-1030.

    XIAO Z M, LI P, CHEN K, et al. Characteristics and sources of chemical composition of atmospheric precipitation in Tianjin[J]. Research of Environmental Sciences, 2015, 28(7):1025-1030(in Chinese).

    [28] 马琳. 上海市降水中水溶性离子组成特征及源解析研究[D]. 上海:复旦大学, 2011:31-32. MA L. Characteristics and source apportionment of water-soluble ions in precipitation over Shanghai, China[D]. Shanghai:Fudan University, 2011:31

    -32(in Chinese).

    [29] QIAO X, DU J, KOTA S H, et al. Wet deposition of sulfur and nitrogen in Jiuzhaigou national nature reserve, Sichuan, China during 2015-2016:Possible effects from regional emission reduction and local tourist activities[J]. Environmental Pollution, 2017, 233:267-277.
    [30] 胡月红, 牛皓. 西安市二氧化硫减排与环境空气质量相关性分析[J]. 环境与可持续发展, 2014, 39(1):63-69.

    HU Y H, NIU H. Correlation analysis of sulfur dioxide emission reduction and ambient air quality in Xi'an[J]. Environment and Sustainable Development, 2014, 39(1):63-69(in Chinese).

    [31] LV C Q, TIAN H Q. Spatial and temporal patterns of nitrogen deposition in China:Synthesis of observational data[J]. Journal of Geophysical Research:Atmospheres, 2007, 112:D22S05.
    [32] 张云峰,于瑞莲,胡恭任,等.泉州市大气PM2.5中水溶性离子季节变化特征及来源解析[J].环境科学,2017,38(10):4044-4053.

    ZHANG Y F, YU R L, HU G R, et al. Seasonal variation and source apportionment of water-soluble ions in PM2.5 in Quanzhou City[J]. Environmental Science, 2017,38(10):4044-4053(in Chinese).

  • 加载中
计量
  • 文章访问数:  3437
  • HTML全文浏览数:  3437
  • PDF下载数:  135
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-05
侯思宇, 邱晨晨, 丁铖, 王国祯, 于兴娜. 西安市降水化学组成及来源解析[J]. 环境化学, 2020, (9): 2384-2394. doi: 10.7524/j.issn.0254-6108.2020050501
引用本文: 侯思宇, 邱晨晨, 丁铖, 王国祯, 于兴娜. 西安市降水化学组成及来源解析[J]. 环境化学, 2020, (9): 2384-2394. doi: 10.7524/j.issn.0254-6108.2020050501
HOU Siyu, QIU Chenchen, DING Cheng, WANG Guozhen, YU Xingna. Analysis on chemical composition of precipitation and its source apportionment in Xi'an City[J]. Environmental Chemistry, 2020, (9): 2384-2394. doi: 10.7524/j.issn.0254-6108.2020050501
Citation: HOU Siyu, QIU Chenchen, DING Cheng, WANG Guozhen, YU Xingna. Analysis on chemical composition of precipitation and its source apportionment in Xi'an City[J]. Environmental Chemistry, 2020, (9): 2384-2394. doi: 10.7524/j.issn.0254-6108.2020050501

西安市降水化学组成及来源解析

    通讯作者: 于兴娜, E-mail: xnyu@nuist.edu.cn
  • 南京信息工程大学气象灾害预报预警与评估协同创新中心, 中国气象局气溶胶与云降水重点开放实验室, 南京, 210044
基金项目:

国家自然科学基金(41775154),江苏省"六大人才高峰"项目(JNHB-057)和江苏省研究生实践创新计划(SJCX20_0303)资助.

摘要: 为研究西安市大气降水污染特征以及来源,对2000—2017年西安市城市站和背景站大气降水组分、沉降以及来源进行对比分析.结果表明,2000—2017年西安市大气降水酸性较弱,城市站的大气降水电导率高于背景站,表明城区降水污染较严重.城市站主要无机酸离子为NO3-和SO42-,主要碱性离子为NH4+和Ca2+,而背景站的主要酸性和碱性离子分别为NO3-和Ca2+.由SO42-和NO3-的比值表明近年来西安市大气污染物排放类型由燃煤型向混合型转变的趋势.从湿沉降量上分析,背景站硫和氮的湿沉降量远小于城市站,表明西安市城市地区的大气硫和氮污染问题更严重.城市站和背景大气降水离子的来源除了扬尘、农业、化石燃料燃烧、机动车排放,城市站和背景站大气降水离子的来源还分别有海盐和生物质燃烧.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回