氯/溴稳定同位素分析技术及其在环境科学研究中的应用

胡新笑, 侯兴旺, 刘倩, 刘稷燕, 江桂斌. 氯/溴稳定同位素分析技术及其在环境科学研究中的应用[J]. 环境化学, 2021, (2): 331-342. doi: 10.7524/j.issn.0254-6108.2020040101
引用本文: 胡新笑, 侯兴旺, 刘倩, 刘稷燕, 江桂斌. 氯/溴稳定同位素分析技术及其在环境科学研究中的应用[J]. 环境化学, 2021, (2): 331-342. doi: 10.7524/j.issn.0254-6108.2020040101
HU Xinxiao, HOU Xingwang, LIU Qian, LIU Jiyan, JIANG Guibin. Techniques for stable chlorine/bromine isotope analysis and recent applications in environmental research[J]. Environmental Chemistry, 2021, (2): 331-342. doi: 10.7524/j.issn.0254-6108.2020040101
Citation: HU Xinxiao, HOU Xingwang, LIU Qian, LIU Jiyan, JIANG Guibin. Techniques for stable chlorine/bromine isotope analysis and recent applications in environmental research[J]. Environmental Chemistry, 2021, (2): 331-342. doi: 10.7524/j.issn.0254-6108.2020040101

氯/溴稳定同位素分析技术及其在环境科学研究中的应用

    通讯作者: 刘稷燕, E-mail: liujy@rcees.ac.cn
  • 基金项目:

    国家重点研发项目(2018YFC1800702)资助.

Techniques for stable chlorine/bromine isotope analysis and recent applications in environmental research

    Corresponding author: LIU Jiyan, liujy@rcees.ac.cn
  • Fund Project: Supported by the National Key Research and Development Project (2018YFC1800702).
  • 摘要: 稳定同位素分析被认为是环境污染物溯源和转化途径探究的有效工具.针对氯/溴稳定同位素研究已经开发了一些较为可靠的分析技术,被广泛应用于氯乙烯、氯苯、溴酚、多溴二苯醚和有机氯农药等有机污染物的研究.本文综述了近年来氯/溴同位素分析技术的最新进展,介绍了稳定同位素分析技术在含氯/溴有机污染物的溯源分析和降解途径识别等方面的应用实例,分析了现有分析技术在仪器测定、分析策略、理论知识等方面的不足,展望了该技术的发展方向及其在环境科学领域内的应用前景.
  • 加载中
  • [1] HAO Y F, LI Y M, HAN X, et al. Air monitoring of polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides in West Antarctica during 2011-2017:Concentrations, temporal trends and potential sources[J]. Environmental Pollution, 2019, 249:381-389.
    [2] TEUTEN E L, XU L, REDDY C M. Two abundant bioaccumulated halogenated compounds are natural products[J]. Science, 2005, 307(5711):917-920.
    [3] UNSON M D, HOLLAND N D, FAULKNER D J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue[J]. Marine Biology, 1994, 119(1):1-11.
    [4] HORST A, HOLMSTRAND H, ANDERSSON P, et al. Stable bromine isotopic composition of methyl bromide released from plant matter[J]. Geochimica et Cosmochimica Acta, 2014, 125:186-195.
    [5] ZHAO L, HU G, YAN Y, et al. Source apportionment of heavy metals in urban road dust in a continental city of eastern China:Using Pb and Sr isotopes combined with multivariate statistical analysis[J]. Atmospheric Environment, 2019, 201:201-211.
    [6] LI Y, ZHANG H, SHAO L, et al. Impact of municipal solid waste incineration on heavy metals in the surrounding soils by multivariate analysis and lead isotope analysis[J]. Journal of Environmental Sciences, 2019, 82:47-56.
    [7] MASBOU J, DROUIN G, PAYRAUDEAU S, et al. Carbon and nitrogen stable isotope fractionation during abiotic hydrolysis of pesticides[J]. Chemosphere, 2018, 213:368-376.
    [8] VOGT C, DORER C, MUSAT F, et al. Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons-from enzymes to the environment[J]. Current Opinion in Biotechnology, 2016, 41:90-98.
    [9] CHEVALLIER M L, COOPER M, KUEMMEL S, et al. Distinct carbon isotope fractionation signatures during biotic and abiotic reductive transformation of chlordecone[J]. Environmental Science & Technology, 2018, 52(6):3615-3624.
    [10] CINCINELLI A, PIERI F, ZHANG Y, et al. Compound specific isotope analysis (CSIA) for chlorine and bromine:A review of techniques and applications to elucidate environmental sources and processes[J]. Environmental Pollution, 2012, 169:112-127.
    [11] KAUFMANN R, LONG A, BENTLEY H, et al. Natural chlorine isotope variations[J]. Nature, 1984, 309(5966):338-340.
    [12] EGGENKAMP H G M, COLEMAN M L. Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples[J]. Chemical Geology, 2000, 167:393-402.
    [13] ELSNER M, JOCHMANN M A, HOFSTETTER T B, et al. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants[J]. Analytical and Bioanalytical Chemistry, 2012, 403(9):2471-2491.
    [14] KOZELL A, YECHESKEL Y, BALABAN N, et al. Application of dual carbon-bromine isotope analysis for investigating abiotic transformations of tribromoneopentyl alcohol (TBNPA)[J]. Environmental Science and Technology, 2015, 49(7):4433-4440.
    [15] SHOUAKAR-STASH O, DRIMMIE R J, ZHANG M, et al. Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS[J]. Applied Geochemistry, 2006, 21(5):766-781.
    [16] SHOUAKAR-STASH O, FRAPE S K, DRIMMIE R J. Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry[J]. Analytical Chemistry, 2005, 77(13):4027-4033.
    [17] NUMATA M, NAKAMURA N, KOSHIKAWA H, et al. Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria[J]. Environmental Science & Technology, 2002, 36(20):4389-4394.
    [18] MA Y Q, PENG Z K, CHEN Y J, et al. High precise determination of bromine isotopic ratios by positive thermal ionization mass spectrometry using static multicollection based on Cs2Br+ Ions[J]. Chinese Journal of Analytical Chemistry, 2016, 44(2):186-191.
    [19] SAKAGUCHI-SOEDER K, JAGER J, GRUND H, et al. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2007, 21(18):3077-3084.
    [20] VAN ACKER M R M D, SHAHAR A, YOUNG E D, et al. GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons[J]. Analytical Chemistry, 2006, 78(13):4663-4667.
    [21] AEPPLI C, HOLMSTRAND H, ANDERSSON P, et al. Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing[J]. Analytical Chemistry, 2010, 82(1):420-426.
    [22] 刘咸德,李莉,池逸,等.气相色谱-高分辨飞行时间质谱法测定大气中六氯苯的氯同位素丰度比值[J]. 质谱学报,2016,37(1):10-16.

    LIU X D, LI L, CHI Y, et al. Chlorine isotope analysis of hexachlorobenzene in air using high resolution time-of-flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(1):10-16(in Chinese).

    [23] HOLT B D, STURCHIO N C, ABRAJANO T A, et al. Conversion of chlorinated volatile organic compounds to carbon dioxide and methyl chloride for isotopic analysis of carbon and chlorine[J]. Analytical Chemistry, 1997, 69(14):2727-2733.
    [24] JENDRZEJEWSKI N, EGGENKAMP H G M, COLEMAN M L. Sequential determination of chlorine and carbon isotopic composition in single microliter samples of chlorinated solvent[J]. Analytical Chemistry, 1997, 69(20):4259-4266.
    [25] HOLT B D, HERATY L J, STURCHIO N C. Extraction of chlorinated aliphatic hydrocarbons from groundwater at micromolar concentrations for isotopic analysis of chlorine[J]. Environmental Pollution, 2001, 113(3):263-269.
    [26] HITZFELD K L, GEHRE M, RICHNOW H H. A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur[J]. Rapid Communications in Mass Spectrometry, 2011, 25(20):3114-3122.
    [27] RENPENNING J, HITZFELD K L, GILEVSKA T, et al. Development and validation of an universal interface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/IRMS[J]. Analytical Chemistry, 2015, 87(5):2832-2839.
    [28] FRANKE S, KUEMMEL S, NIJENHUIS I. Liquid chromatography/isotope ratio mass spectrometry analysis of halogenated benzoates for characterization of the underlying degradation reaction in Thauera chlorobenzoica CB-1T[J]. Rapid Communications in Mass Spectrometry, 2018, 32(11):906-912.
    [29] HOLMSTRAND H, ANDERSSON P, GUSTAFSSON O. Chlorine isotope analysis of submicromole organochlorine samples by sealed tube combustion and thermal ionization mass spectrometry[J]. Analytical Chemistry, 2004, 76(8):2336-2342.
    [30] NUMATA M, NAKAMURA N, KOSHIKAWA H, et al. Chlorine stable isotope measurements of chlorinated aliphatic hydrocarbons by thermal ionization mass spectrometry[J]. Analytica Chimica Acta, 2002, 455(1):1-9.
    [31] SYLVA S P, BALL L, NELSON R K, et al. Compound-specific 81Br/79Br analysis by capillary gas chromatography/multicollector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(20):3301-3305.
    [32] GELMAN F, HALICZ L. High precision determination of bromine isotope ratio by GC-MC-ICPMS[J]. International Journal of Mass Spectrometry, 2010, 289(2/3):167-169.
    [33] ZAKON Y, HALICZ L, GELMAN F. Isotope analysis of sulfur, bromine, and chlorine in individual anionic species by ion chromatography/multicollector-ICPMS[J]. Analytical Chemistry, 2014, 86(13):6495-6500.
    [34] ZAKON Y, HALICZ L, LEV O, et al. Compound-specific bromine isotope ratio analysis using gas chromatography/quadrupole mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2016, 30(17):1951-1956.
    [35] HECKEL B, RODRIGUEZ-FERNANDEZ D, TORRENTO C, et al. Compound-specific chlorine isotope analysis of tetrachloromethane and trichloromethane by gas chromatography-isotope ratio mass spectrometry vs gas chromatography-quadrupole mass spectrometry:method development and evaluation of precision and trueness[J]. Analytical Chemistry, 2017, 89(6):3411-3420.
    [36] BERNSTEIN A, SHOUAKAR-STASH O, EBERT K, et al. Compound-specific chlorine isotope analysis:A comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study[J]. Analytical Chemistry, 2011, 83(20):7624-7634.
    [37] 陈柳竹. 典型多溴联苯醚单体碳溴同位素效应研究[D]. 北京:中国地质大学,2017. CHEN L Z. Study on carbon and bromine isotopic effects of typical PBDEs congeners[D] Beijing:China University of Geosciences, 2017(in Chinese).
    [38] JIN B, LASKOV C, ROLLE M, et al. Chlorine isotope analysis of organic contaminants using GC-qMS:Method optimization and comparison of different evaluation schemes[J]. Environmental Science & Technology, 2011, 45(12):5279-5286.
    [39] SCHIMMELRNANN A, QI H, COPLEN T B, et al. Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements:caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils[J]. Analytical Chemistry, 2016, 88(8):4294-4302.
    [40] TANG C M, TAN J H, XIONG S S, et al. Chlorine and bromine isotope fractionation of halogenated organic pollutants on gas chromatography columns[J]. Journal of Chromatography A, 2017, 1514:103-109.
    [41] TANG C M, TAN J H. Simultaneous observation of concurrent two-dimensional carbon and chlorine/bromine isotope fractionations of halogenated organic compounds on gas[J]. Analytica Chimica Acta, 2018, 1039:172-182.
    [42] JENDRZEJEWSKI N, EGGENKAMP H G M, COLEMAN M L. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions:scope of application to environmental problems[J]. Applied Geochemistry, 2001, 16(9/10):1021-1031.
    [43] CHEN L Z, SHOUAKAR-STASH O, MA T, et al. Significance of stable carbon and bromine isotopes in the source identification of PBDEs[J]. Chemosphere, 2017, 186:160-166.
    [44] BOWDEN B F, TOWERZEY L, JUNK P C. A new brominated diphenyl ether from the marine sponge Dysidea herbacea[J]. Australian Journal of Chemistry, 2000, 53(4):299-301.
    [45] KUNIYOSHI M, YAMADA K, HIGA T. A biologically active diphenyl ether from the green alga Cladophora fascicularis[J]. Experientia, 1985, 41(4):523-524.
    [46] CHUNG H Y, MA W C J, ANG P O, et al. Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong[J]. Journal of Agricultural and Food Chemistry, 2003, 51(9):2619-2624.
    [47] CARRIZO D, UNGER M, HOLMSTRAND H, et al. Compound-specific bromine isotope compositions of one natural and six industrially synthesised organobromine substances[J]. Environmental Chemistry, 2011, 8(2):127-132.
    [48] HOLMSTRAND H, ZENCAK Z, MANDALAKIS M, et al. Chlorine isotope evidence for the anthropogenic origin of tris-(4-chlorophenyl)methane[J]. Applied Geochemistry, 2010, 25(9):1301-1306.
    [49] DRENZEK N J, TARR C H, EGLINTON T I, et al. Stable chlorine and carbon isotopic compositions of selected semi-volatile organochlorine compounds[J]. Organic Geochemistry, 2002, 33(4):437-444.
    [50] REDDY C M, XU L, DRENZEK N J, et al. A chlorine isotope effect for enzyme-catalyzed chlorination[J]. Journal of the American Chemical Society, 2002, 124(49):14526-14527.
    [51] HOLMSTRAND H, GADOMSKI D, MANDALAKIS M, et al. Origin of PCDDs in ball clay assessed with compound-specific chlorine isotope analysis and radiocarbon dating[J]. Environmental Science & Technology, 2006, 40(12):3730-3735.
    [52] ELSNER M, ZWANK L, HUNKELER D, et al. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants[J]. Environmental Science & Technology, 2005, 39(18):6896-6916.
    [53] KUNTZE K, KOZELL A, RICHNOW H H, et al. Dual carbon-bromine stable isotope analysis allows distinguishing transformation pathways of ethylene dibromide[J]. Environmental Science and Technology, 2016, 50(18):9855-9863.
    [54] HOLMSTRAND H, MANDALAKIS M, ZENCAK Z, et al. First compound-specific chlorine-isotope analysis of environmentally-bioaccumulated organochlorines indicates a degradation-relatable kinetic isotope effect for DDT[J]. Chemosphere, 2007, 69(10):1533-1539.
    [55] PONSIN V, TORRENTO C, LIHL C, et al. Compound-specific chlorine isotope analysis of the herbicides atrazine, acetochlor, and metolachlor[J]. Analytical Chemistry, 2019, 91(22):14290-14298.
    [56] HOEYNG D, PROMMER H, BLUM P, et al. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers[J]. Journal of Contaminant Hydrology, 2015, 174:10-27.
    [57] ROSELL M, PALAU J, HATIJAH MORTAN S, et al. Dual carbon-chlorine isotope fractionation during dichloroelimination of 1,1,2-trichloroethane by an enrichment culture containing Dehalogenimonas sp[J]. Science of the Total Environment, 2019, 648:422-429.
    [58] RODRIGUEZ-FERNANDEZ D, TORRENTO C, PALAU J, et al. Unravelling long-term source removal effects and chlorinated methanes natural attenuation processes by C and Cl stable isotopic patterns at a complex field site[J]. Science of the Total Environment, 2018, 645:286-296.
    [59] HERMON L, DENONFOUX J, HELLAL J, et al. Dichloromethane biodegradation in multi-contaminated groundwater:Insights from biomolecular and compound-specific isotope analyses[J]. Water Research, 2018, 142:217-226.
    [60] RODRIGUEZ-FERNANDEZ D, TORRENTO C, GUIVERNAU M, et al. Vitamin B12 effects on chlorinated methanes-degrading microcosms:Dual isotope and metabolically active microbial populations assessment[J]. Science of the Total Environment, 2018, 621:1615-1625.
    [61] ABE Y, ARAVENA R, ZOPFI J, et al. Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene[J]. Environmental Science & Technology, 2009, 43(1):101-107.
    [62] MURRAY A M, OTTOSEN C B, MAILLARD J, et al. Chlorinated ethene plume evolution after source thermal remediation:Determination of degradation rates and mechanisms[J]. Journal of Contaminant Hydrology, 2019, 227, DOI:10.1016/j.jconhyd.2019.103551.
    [63] QIAN Y G, CHEN K, LIU Y Q, et al. Assessment of hexachlorcyclohexane biodegradation in contaminated soil by compound-specific stable isotope analysis[J]. Environmental Pollution, 2019, 254, DOI:10.1016/j.envpol.2019.113008.
    [64] WU L P, MOSES S Y, LIU Y Q, et al. A concept for studying the transformation reaction of hexachlorocyclohexanes in food webs using multi-element compound-specific isotope analysis[J]. Analytica Chimica Acta, 2019, 1064:56-64.
    [65] SCHILLING I E, BOPP C E, LAL R, et al. Assessing aerobic biotransformation of hexachlorocyclohexane isomers by compound-specific isotope analysis[J]. Environmental Science & Technology, 2019, 53(13):7419-7431.
    [66] SCHILLING I E, HESS R, BOLOTIN J, et al. Kinetic isotope effects of the enzymatic transformation of γ-hexachlorocyclohexane by the lindane dehydrochlorinase variants LinA1 and LinA2[J]. Environmental Science & Technology, 2019, 53(5):2353-2363.
    [67] BASHIR S, KUNTZE K, VOGT C, et al. Anaerobic biotransformation of hexachlorocyclohexane isomers by Dehalococcoides species and an enrichment culture[J]. Biodegradation, 2018, 29(4):409-418.
    [68] BENISRAEL M, WANNER P, ARAVENA R, et al. Toluene biodegradation in the vadose zone of a poplar phytoremediation system identified using metagenomics and toluene-specific stable carbon isotope analysis[J]. International Journal of Phytoremediation, 2019, 21(1):60-69.
    [69] MARCHESI M, ALBERTI L, SHOUAKAR-STASH O, et al. 37Cl-compound specific isotope analysis and assessment of functional genes for monitoring monochlorobenzene (MCB) biodegradation under aerobic conditions[J]. Science of the Total Environment, 2018, 619:784-793.
    [70] GOLAN R, GELMAN F, KUDER T, et al. Degradation of 4-bromophenol by Ochrobactrum sp. HI1 isolated from desert soil:pathway and isotope effects[J]. Biodegradation, 2019, 30(1):37-46.
    [71] BERENS M J, ULRICH B A, STREHLAU J H, et al. Mineral identity, natural organic matter, and repeated contaminant exposures do not affect the carbon and nitrogen isotope fractionation of 2,4-dinitroanisole during abiotic reduction[J]. Environmental Science-Processes & Impacts, 2019, 21(1):51-62.
    [72] EHRL B N, GHARASOO M, ELSNER M. Isotope fractionation pinpoints membrane permeability as a barrier to atrazine biodegradation in Gram-negative Polaromonas sp. Nea-C[J]. Environmental Science & Technology, 2018, 52(7):4137-4144.
    [73] WOODS A, KUNTZE K, GELMAN F, et al. Variable dual carbon-bromine stable isotope fractionation during enzyme-catalyzed reductive dehalogenation of brominated ethenes[J]. Chemosphere, 2018, 190:211-217.
    [74] JIN B, NIJENHUIS I, ROLLE M. Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation[J]. Isotopes in Environmental and Health Studies, 2018, 54(4):418-434.
    [75] BERNSTEIN A, RONEN Z, LEVIN E, et al. Kinetic bromine isotope effect:example from the microbial debromination of brominated phenols[J]. Analytical and Bioanalytical Chemistry, 2013, 405(9):2923-2929.
    [76] ZAKON Y, HALICZ L, GELMAN F. Bromine and carbon isotope effects during photolysis of brominated phenols[J]. Environmental Science and Technology, 2013, 47(24):14147-14153.
    [77] ELSNER M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants:Principles, prospects and limitations[J]. Journal of Environmental Monitoring, 2010, 12(11):2005-2031.
    [78] CRETNIK S, THORESON K A, BERNSTEIN A, et al. Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria:Insights from dual element isotope analysis (13C/12C, 37Cl/35Cl)[J]. Environmental Science & Technology, 2013, 47(13):6855-6863.
    [79] RENPENNING J, KELLER S, CRETNIK S, et al. Combined C and Cl isotope effects indicate differences between corrinoids and enzyme (Sulfurospirillum multivorans PceA) in reductive dehalogenation of tetrachloroethene, but not trichloroethene[J]. Environmental Science & Technology, 2014, 48(20):11837-11845.
    [80] WIEGERT C, AEPPLI C, KNOWLES T, et al. Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater[J]. Environmental Science & Technology, 2012, 46(20):10918-10925.
    [81] KUDER T, VAN BREUKELEN B M, VANDERFORD M, et al. 3D-CSIA:Carbon, chlorine, and hydrogen isotope fractionation in transformation of TCE to ethene by a dehalococcoides culture[J]. Environmental Science & Technology, 2013, 47(17):9668-9677.
    [82] AEPPLI C, TYSKLIND M, HOLMSTRAND H, et al. Use of Cl and C isotopic fractionation to identify degradation and sources of polychlorinated phenols:mechanistic study and field application[J]. Environmental Science & Technology, 2013, 47(2):790-797.
    [83] BERGMANN F D, ABU LABAN N M F H, MEYER A H, et al. Dual (C, H) isotope fractionation in anaerobic low molecular weight (Poly)aromatic hydrocarbon (PAH) degradation:Potential for field studies and mechanistic implications[J]. Environmental Science & Technology, 2011, 45(16):6947-6953.
    [84] KUDER T, WILSON J T, KAISER P, et al. Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE:Microcosm and field evidence[J]. Environmental Science & Technology, 2005, 39(1):213-220.
    [85] MARIOTTI A, GERMON J C, HUBERT P, et al. Experimental determination of nitrogen kinetic isotope fractionation:some principles; illustration for the denitrification and nitrification processes[J]. Plant and Soil, 1981, 62(3):413-430.
    [86] VAN BREUKELEN B M, HUNKELER D, VOLKERING F. Quantification of sequential chlorinated ethene degradation by use of a reactive transport model incorporating isotope fractionation[J]. Environmental Science & Technology, 2005, 39(11):4189-4197.
    [87] HUNKELER D, VAN BREUKELEN B M, ELSNER M. Modeling chlorine isotope trends during sequential transformation of chlorinated ethenes[J]. Environmental Science & Technology, 2009, 43(17):6750-6756.
  • 加载中
计量
  • 文章访问数:  3916
  • HTML全文浏览数:  3916
  • PDF下载数:  140
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-04-01

氯/溴稳定同位素分析技术及其在环境科学研究中的应用

    通讯作者: 刘稷燕, E-mail: liujy@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085;
  • 2. 中国科学院大学资源与环境学院, 北京, 100049;
  • 3. 中国科学院大学, 杭州高等研究院, 杭州, 310000
基金项目:

国家重点研发项目(2018YFC1800702)资助.

摘要: 稳定同位素分析被认为是环境污染物溯源和转化途径探究的有效工具.针对氯/溴稳定同位素研究已经开发了一些较为可靠的分析技术,被广泛应用于氯乙烯、氯苯、溴酚、多溴二苯醚和有机氯农药等有机污染物的研究.本文综述了近年来氯/溴同位素分析技术的最新进展,介绍了稳定同位素分析技术在含氯/溴有机污染物的溯源分析和降解途径识别等方面的应用实例,分析了现有分析技术在仪器测定、分析策略、理论知识等方面的不足,展望了该技术的发展方向及其在环境科学领域内的应用前景.

English Abstract

参考文献 (87)

目录

/

返回文章
返回