-
目前,药物和个人护理用品(pharmaceuticals and personal care products, PPCPs)广泛应用于动物疾病的防治、畜牧以及人类医疗等领域,对社会的发展和人类的健康做出了巨大的贡献[1]。但PPCPs进入动物或人体内均不能被全部吸收,大部分以原药或者其代谢产物通过尿液和粪便的形式排泄从而进入到环境中,因此有研究者在废水、地表水、海水、土壤等其他环境介质中都检测出了不同含量药物的存在[2],而且PPCPs还可以通过直接饮水和食物链富集等方式进入到人体当中,对人体的健康产生危害[3]。因此迫切地需要对PPCPs的环境风险和环境行为进行系统的研究。磺胺甲恶唑(SMX)和卡马西平(CBZ)作为代表性药物,两者环境暴露浓度高、迁移性高、难以降解且生物毒性大[4-7]。
碳基材料结构简单、具有丰富的孔隙结构、较大的比表面积和含氧官能团,对有机污染物具有较大的吸附能力,被广泛的用于去除环境中的有机污染物[8-10]。目前多数研究者仅仅关注其吸附能力的大小,如竞争吸附导致吸附量降低[11],或者协同作用导致吸附量增加[12],忽视了动力学吸附特性的研究,特别是共吸附体系中PPCPs所发生的竞争吸附动力学以及竞争吸持动力学,而且基本上是关于共吸附体系中离子[13]之间的动力学研究,但是几乎没有关于共吸附体系中竞争吸持动力学的研究。
本研究选取活性炭(AC)、单壁碳纳米管(SC)、氧化石墨烯(GO)为模型碳基吸附剂,SMX和CBZ作为模型药物,对单一体系以及共吸附体系中吸附动力学进行系统研究,为科学的预测PPCPs的环境行为和碳基材料在污染控制方面的应用提供理论基础。
药物在碳基材料上的共吸附和竞争吸持动力学
Study on the co-adsorption and sequential competitive adsorption kinetics of PPCPs on carbon-based materials
-
摘要: 本研究考察了两种药物磺胺甲恶唑(SMX)和卡马西平(CBZ)在活性炭(AC)、单壁碳纳米管(SC)和氧化石墨烯(GO)上的单一吸附、共吸附和竞争吸持动力学特性,用拟一级动力学(PFOM)和修正后的拟二级动力学(PSOM)两种模型对实验数据进行了拟合。研究结果表明,单一吸附体系中SMX和CBZ在3种吸附剂上的吸附速率为GO>AC>SC,吸附速率与吸附剂的形貌和表面性质有关;与SMX相比,CBZ由于具有强疏水作用和较强的π-π 作用而具有更高的竞争吸附能力;在两种竞争体系中,SMX和CBZ在碳基材料上的吸附速率和吸附容量都会有所降低,竞争物质在吸附剂上形成的空间位阻是造成吸附速率降低的主要原因。Abstract: In this study, the single adsorption, co-adsorption and sequential competitive adsorption kinetics of sulfamethoxazole (SMX) and carbamazepine (CBZ) on activated carbon (AC), single-wall carbon nanotubes (SC) and Graphene Oxide (GO) were investigated. Pseudo-first-order(PFOM) and Pseudo-second-order (PSOM) models were used to fit the experimental date. The results showed that the adsorption rate of SMX and CBZ on the three adsorbents was GO>AC>SC in a single adsorption system, and the adsorption rate was related to the morphology and surface properties of the adsorbent. Compared with SMX, CBZ had higher competitive adsorption capacity due to its strong hydrophobicity and π-π EDA interaction. In the two competitive systems, the adsorption rate and adsorption capacity of SMX and CBZ on carbon-based materials were both reduced, and the steric hindrance formed by the competing substances on the adsorbent was the main reason for the decrease of the adsorption rate.
-
Key words:
- carbon-based materials /
- PPCPs /
- competitive adsorption /
- competitive holding /
- adsorption kinetics
-
图 4 竞争吸持体系中SMX和CBZ的吸附动力学曲线(a)CBZ为先加入的竞争物质,SMX为后加入的主要物质(b)SMX为先加入的竞争物质,CBZ为后加入的主要物质
Figure 4. The adsorption kinetics of SMX and CBZ in sequential competitive adsorption (a) CBZ is the competitive substance, and SMX is the main substance. (b) SMX is the competitive substance, and CBZ is the main substance
表 1 吸附质的基本性质
Table 1. The properties of adsorbates
吸附质
Adsorbate化学式
Chemical formula摩尔质量/
(g·mol−1)
Molar mass解离常数
pKa溶解度/(mg·L−1)
Solubility辛醇-水分配系数
lgKOW化学结构式
Chemical structural formulaSMX C10H11N3O3S 253.3 1.7
5.7365 0.48 CBZ C15H12N2O 236.3 1.0
13.9112 2.25 表 2 吸附剂的元素组成和BET-N2表征
Table 2. Elemental composition and BET-N2 properties
吸附剂
Adsorbent元素组成/%
Elementary compositionBET N C H S O C/O C/(O+N) 比表面积/(m 2 ·g−1)
Specific surface area孔径/nm
Bore diameter孔体积/(cm3 ·g−1)
Pore volumeAC 0.72 71.50 2.77 0.37 20.90 4.55 4.38 557 1.08 0.194 SC 0.18 96.30 1.35 2.15 59.70 5.94 174 1.08 0.061 GO 6.00 67.10 3.05 0.46 21.70 4.13 3.14 167 1.03 0.058 表 3 SMX和CBZ在3种吸附剂上的吸附动力学拟合结果
Table 3. Fitting results of SMX and CBZ sorption kinetics using PFOM and PSOM
吸附质
Adsorbate吸附剂
AdsorbentPFOM PSOM Qa/(mg·kg−1) K1a/h−1 R2adj Qa/(mg·kg−1) K2a*/h−1 R2adj SMX AC 3.62×104 0.983 0.987 3.74×104 2.030 0.971 SC 2.46×104 0.849 0.967 2.53×104 1.775 0.906 GO 1.14×104 1.811 0.994 1.15×104 6.653 0.985 CBZ AC 7.58×104 0.852 0.993 7.91×104 1.606 0.986 SC 3.84×104 0.630 0.975 4.03×104 1.040 0.950 GO 1.80×104 1.739 0.996 1.83×104 4.944 0.998 表 4 单一吸附和共吸附体系中PFOM模型对吸附动力学曲线拟合结果
Table 4. PFOM fitting result of adsorption kinetics of single and co-adsorption system
吸附质
Adsorbate吸附剂
AdsorbentPFOM Qa/(mg·kg−1) K1a/h−1 R2adj SMX AC 3.62×104 0.983 0.987 SMX+CBZ 9.49E+03 2.53×106 0.852 SMX SC 2.46×104 0.849 0.967 SMX+CBZ 5.32×103 1.910 0.708 SMX GO 1.14×104 1.811 0.994 SMX+CBZ 5.02×103 2.002 0.978 CBZ AC 7.58×104 0.852 0.993 CBZ+SMX 6.47×104 0.714 0.989 CBZ SC 3.84×104 0.630 0.975 CBZ+SMX 3.26×104 0.487 0.962 CBZ GO 1.80×104 1.739 0.995 CBZ+SMX 1.61×104 1.240 0.980 表 5 竞争吸持体系中SMX和CBZ在AC、SC、GO的吸附动力学拟合结果
Table 5. The fitting results of adsorption kinetics of SMX and CBZ in sequential competitive adsorption
吸附质
Adsorbate吸附剂
AdsorbentPFOM PSOM Qa/(mg·kg−1) K1a/h−1 R2adj Qa/(mg·kg−1) K2a*/h−1 R2adj (CBZ)a
SMXAC 1.89×104 0.590 0.967 2.00×104 0.924 0.982 SC 5.95×103 0.390 0.923 6.37×103 0.562 0.979 GO 8.89×103 0.497 0.897 9.50×103 0.732 0.968 (SMX)
CBZAC 6.84×104 0.649 0.989 7.17×104 1.101 0.991 SC 3.23×104 0.466 0.961 3.44×104 0.692 0.964 GO 1.67×104 1.498 0.998 1.70×104 4.102 0.994 a:括号内为先加入的竞争物质,无括号为后加入的主要物质.
a:in brackets are the competing substances added first, and in parenthesis-free are the main substances added later. -
[1] 宫国栋, 方菁. 我国关于抗生素生产与应用的政策法规研究分析 [J]. 公共卫生与预防医学, 2014, 25(5): 80-81. GONG G D, FANG J. The research and analysis of policies and regulations on the production and application of antibiotics in China [J]. Journal of Public Health and Preventive Medicine, 2014, 25(5): 80-81(in Chinese).
[2] LIU J L, WONG M H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China [J]. Environment International, 2013, 59C(3): 208-224. [3] WILKINSON J L, HOODA P S, BARKER J, et al. Ecotoxic pharmaceuticals, personal care products, and other emerging contaminants: A review of environmental, receptor-mediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans [J]. Critical Reviews in Environmental Science & Technology, 2016, 46(4): 336-381. [4] XU W H, ZHANG G, WAI O W H, et al. Transport and adsorption of antibiotics by marine sediments in a dynamic environment [J]. Journal of Soil & Sediments, 2009, 9(4): 364-373. [5] CHEFETZ B, MUALEM T, BEN-ARI J. Sorption and mobility of pharmaceutical compounds in soil irrigated with reclaimed wastewater [J]. Chemosphere, 2008, 73(8): 1335-1343. doi: 10.1016/j.chemosphere.2008.06.070 [6] MIAO X S, YANG J J, Metcalfe C D. Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant [J]. Environmental Science & Technology, 2005, 39(19): 7469-7475. [7] 鲍景奇. 卡马西平与其代谢物的抗癫痫和毒副反应 [J]. 新药与临床, 1989(4): 207-209. BAO J Q. Antiepileptic and toxic side effects of carbamazepine and its metabolites [J]. New Drugs Clin Remedies, 1989(4): 207-209(in Chinese).
[8] JI L, CHEN W, DUAN L, et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents [J]. Environmental Science & Technology, 2009, 43(7): 2322-2327. [9] XU J, CAO Z, ZHANG Y, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism [J]. Chemosphere, 2018, 195(MAR.): 351-364. [10] JI L, CHEN W, XU Z, et al. Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution [J]. Journal of Environment Quality, 2013, 42(1): 191. doi: 10.2134/jeq2012.0172 [11] LING Z J, et al. Sorption of copper and norfloxacin onto humic acid: effects of pH, ionic strength, and foreign ions. [J]. Environmental Science and Pollution Research International, 2019, 26(11): 10685-10694. doi: 10.1007/s11356-019-04515-5 [12] JESÚS I MARTÍNEZ-COSTA, LEYVA-RAMOS R, PADILLA-ORTEGA E, et al. Antagonistic, synergistic and non-interactive competitive sorption of sulfamethoxazole-trimethoprim and sulfamethoxazole cadmium (Ⅱ) on a hybrid clay nanosorbent [J]. The Ence of the Total Environment, 2018, 640-641: 1241-1250. doi: 10.1016/j.scitotenv.2018.05.399 [13] YIN Q, WANG R, ZHAO Z. Application of Mg-Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water [J]. Journal of Cleaner Production, 2018, 176(MAR. 1): 230-240. [14] PAN B, XING B. Adsorption kinetics of 17α-ethinyl estradiol and bisphenol A on carbon nanomaterials. I. Several concerns regarding pseudo-first order and pseudo-second order models [J]. Journal of Soils & Sediments, 2010, 10(5): 838-844. [15] HO Y S, MCKAY G. Pseudo-second order model for sorption processes [J]. Process Biochemistry, 1999, 34(5): 451-465. doi: 10.1016/S0032-9592(98)00112-5 [16] WANG C, LI H, LIAO S, et al. Sorption affinities of sulfamethoxazole and carbamazepine to two sorbents under co-sorption systems [J]. Environmental Pollution, 2014, 194: 203-209. doi: 10.1016/j.envpol.2014.07.033 [17] WANG C, LI H, LIAO S, et al. Coadsorption, desorption hysteresis and sorption thermodynamics of sulfamethoxazole and carbamazepine on graphene oxide and graphite [J]. Carbon, 2013, 65(Complete): 243-251. [18] PAN B, XING B S. Competitive and complementary adsorption of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials [J]. Journal of Agricultural & Food Chemistry, 2010, 58(14): 8338-8343. [19] 刘伟, 李立清, 姚小龙, 等. 活性炭孔隙结构在其丙酮吸附中的作用 [J]. 中南大学学报(自然科学版), 2012, 243(4): 375-384. LIU W, LI L Q, YAO X L, et al. Role of pore structure of activated carbon in adsorption for aceton [J]. Journal of Central South University (Science and Technology), 2012, 243(4): 375-384(in Chinese).
[20] 王驰. 磺胺甲恶唑和卡马西平在碳纳米材料上的竟争和补充吸附行为研究[D]. 昆明: 昆明理工大学, 2015. WANG C. Complementary sorption and sorption affinity comparison of sulfamethoxazole and carbamazepine on carbonaceous nanomaterials[D]. Kunming: Kunming University, 2015 (in Chinese).
[21] 孟冠华, 李爱民, 张全兴. 活性炭的表面含氧官能团及其对吸附影响的研究进展 [J]. 离子交换与吸附, 2007, 23(1): 88-94. doi: 10.3321/j.issn:1001-5493.2007.01.013 MENG G H, LI A M, ZHANG Q X. Research progress of surface oxygen-containing functional groups on activated carbon and their effects on adsorption [J]. Ion Exchange and Adsorption, 2007, 23(1): 88-94(in Chinese). doi: 10.3321/j.issn:1001-5493.2007.01.013
[22] WANG J, CHEN Z, CHEN B. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets [J]. Environmental Science & Technology, 2014, 48(9): 4817-4825. [23] PARDO M T. Sorption of lead, copper, zinc and cadmium by soils: Effect of nitriloacetic acid on metal retention [J]. Communications in Soil Science and Plant Analysis, 2000, 31(1-2): 31-40. doi: 10.1080/00103620009370418 [24] SERRANO S, GARRIDO F, CAMPBELL C G, et al. Competitive sorption of cadmium and lead in acid soils of Central Spain [J]. Geoderma, 2005, 124(1-2): 91-104. doi: 10.1016/j.geoderma.2004.04.002 [25] APPEL C, MA L Q, RHUE R D, et al. Sequential sorption of lead and cadmium in three tropical soils [J]. Environmental Pollution, 2008, 155(1): 132-140. doi: 10.1016/j.envpol.2007.10.026