准东煤和煤矸石共燃对灰熔融特性和钠元素释放行为影响

郑烨, 张锴, 李建波, 关彦军, 杨凤玲, 程芳琴. 准东煤和煤矸石共燃对灰熔融特性和钠元素释放行为影响[J]. 环境化学, 2020, (8): 2112-2119. doi: 10.7524/j.issn.0254-6108.2020041604
引用本文: 郑烨, 张锴, 李建波, 关彦军, 杨凤玲, 程芳琴. 准东煤和煤矸石共燃对灰熔融特性和钠元素释放行为影响[J]. 环境化学, 2020, (8): 2112-2119. doi: 10.7524/j.issn.0254-6108.2020041604
ZHENG Ye, ZHANG Kai, LI Jianbo, GUAN Yanjun, YANG Fengling, CHENG Fangqin. Ash fusion and sodium release characteristic during co-combustion of Zhundong coal and coal gangue[J]. Environmental Chemistry, 2020, (8): 2112-2119. doi: 10.7524/j.issn.0254-6108.2020041604
Citation: ZHENG Ye, ZHANG Kai, LI Jianbo, GUAN Yanjun, YANG Fengling, CHENG Fangqin. Ash fusion and sodium release characteristic during co-combustion of Zhundong coal and coal gangue[J]. Environmental Chemistry, 2020, (8): 2112-2119. doi: 10.7524/j.issn.0254-6108.2020041604

准东煤和煤矸石共燃对灰熔融特性和钠元素释放行为影响

    通讯作者: 张锴, E-mail: kzhang@ncepu.edu.cn
  • 基金项目:

    国家自然科学基金委与山西煤基低碳联合基金重点项目(U1910215)和中央高校基本科研业务费专项(2018ZD03)资助.

Ash fusion and sodium release characteristic during co-combustion of Zhundong coal and coal gangue

    Corresponding author: ZHANG Kai, kzhang@ncepu.edu.cn
  • Fund Project: Supported by NSFC-Shanxi Coal Based Low Carbon Collaborative Funds(U1910215) and Eundamental Research Funds for the Central Universities(2018ZD03).
  • 摘要: 本文利用马弗炉试验台,在815℃和1000℃下进行了准东煤和煤矸石的共燃实验,并借助灰熔融特性分析仪、电感耦合等离子体分析仪(ICP-OES)、电子扫描显微镜-能谱仪(SEM-EDS)和X射线衍射仪(XRD)对掺混样品灰熔融特性(AFTs)、钠元素释放行为、表观形貌和矿物进行表征.结果表明:随着煤矸石掺混(CG)比例增加,准东煤(ZD)灰熔融温度呈先下降后升高的变化趋势,并在掺混比例达到15%时达到最低值,说明煤矸石掺混比例与掺混样品(ZD/CG)灰熔融温度间呈非线性关系;通过SEM-EDS与XRD表征可知,随着煤矸石掺混比例增加,高温下掺混样品中耐熔矿物(硫铝酸钙、镁黄长石方镁石、石英和赤铁矿等)和助熔矿物(钙黄长石和钠长石等)之间相互转化是影响掺混样品灰熔融温度的主要原因;无论何种掺混比例,残余灰中钠元素含量实测值(RNa/exp)均大于理论值(RNa/cal),且二者偏差率(ηdev)均为正数,表明准东煤与煤矸石在高温下发生了抑制掺混样品中的钠元素向气相释放的协同反应.
  • 加载中
  • [1] ZHOU J B, ZHUANG X G, ALASTUEY A, et al. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang Province, China[J]. International Journal of Coal Geology, 2010, 82:51-67.
    [2] ZHANG Y K, ZHANG H X. Gasification characteristics and sodium transformation behavior of high-sodium Zhundong Coal[J]. Energy & Fuels, 2017, 31:6435-6444.
    [3] 曾宪鹏, 于敦喜, 樊斌, 等. 不同温度下准东煤燃烧颗粒物的生成特性[J]. 煤炭学报, 2015, 40(11):2690-2695.

    ZENG X P, YU D X, FAN B, et al. Particulate matter formation characteristics during Zhundong coal combustion at different temperatures[J]. Journal of China Coal Society, 2015, 40(11):2590-2695(in Chinese).

    [4] LI J B, ZHU M M, ZHANG Z Z, et al, Characterisation of ash deposits on a probe at different temperatures during combustion of a Zhundong lignite in a drop tube furnace[J]. Fuel Processing Technology, 2016, 144:155-163.
    [5] LUAN C, YOU C F, ZHANG D K. Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace[J]. Energy, 2014, 69:562-570.
    [6] 张守玉, 陈川, 施大钟, 等. 高钠煤燃烧利用现状[J]. 中国电机工程学报, 2013, 33(5):1-12.

    ZHANG S Y, CHEN C, SHI D Z, et al. Situation of combustion utilization of high sodium coal[J]. Proceedings of the CSEE, 2013, 33(5):1-12(in Chinese).

    [7] ZHAO C C, LIU G J, YAN, Z C, et al. Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel, 2012, 97:644-650.
    [8] TRINE J L, MARIT E J, CHRISTINA V, et al. Whole blood mercury and the risk of cardiovascular disease among the Greenlandic pollution[J]. Environmental Research, 2018, 164:310-315.
    [9] 郭彦霞, 张圆圆, 程芳琴, 等. 煤矸石综合利用的产业化及其展望[J]. 化工学报, 2014, 65(7):2443-2453.

    GUO Y X, ZHANG Y Y, CHENG F Q. Industrial development and prospect about comprehensive utilization of coal gangue[J]. CIESC Journal, 2014, 65(7):2443-2453(in Chinese).

    [10] HEIDEL B, ROGGE T, SCHEFFKNECHT G. Controlled desorption of mercury in wet FGD waste water treatment[J]. Applied Energy 2016, 162:1211-1217.
    [11] 赵文鑫, 刘瑞卿, 张建利, 等煤矸石热处理过程中汞的释放行为[J]. 环境化学, 2019, 38(4):842-849.

    ZHAO W X, LIU R Q, ZHANG J L, et al. Release behaviors of mercury during thermal treatment of three coal gangue[J]. Environmental Chemistry, 2019, 38(4):842-849(in Chinese).

    [12] WANG L H, ZHAO P D, LI G. Character of Si and Al phases in coal gangue and its ash[J]. ACTA Geologica Sinica, 2009, 83(6):1116-1121.
    [13] WILLENBORG W, MULLER M, HILPERTK K. Alkali removal at about 1400℃ for the pressurized pulverized coal combustion combined cycle. 1. Thermodynamics and concept[J]. Energy & Fuels, 2006, 20(6):2593-2598.
    [14] TRAN K Q, IISA K, STEENARI B M, et al. A kinetic study of gaseous alkali capture by kaolin in the fixed bed reactor equipped with an alkali detector[J]. Fuel, 2005, 84:169-175.
    [15] TSUYOSHI T, ICHIRO N. Emission control of sodium compounds and their formation mechanisms during coal combustion[J]. Proceedings of the Combustion Institute, 2007, 31:2863-2870.
    [16] DAI B Q, WU X J, GIROLAMO A D, et al. Inhibition of lignite ash slagging and fouling upon the use of a silica-based additive in an industrial pulverised coal-fired boiler, part 1:Changes on the properties of ash deposits along the furnace[J]. Fuel, 2015, 139:720-732.
    [17] 郑烨, 李建波, 关彦军, 等. 碱性氧化物对煤灰熔融特征行为的影响[J]. 化工进展, 2020, 39(2):496-505.

    ZHENG Y, LI J B, GUAN Y J, et al. Effects of basic oxides on ash fusion characteristic of coal ash[J]. Chemical Industry and Engineering Progress, 2020, 39(2):496-505(in Chinese).

    [18] ZHAO Y L, ZHANG Y M, BAO S X, et al. Effect of stone coal chemical composition on sintering behavior during roasting[J]. Industrial & Engineering Chemistry Research, 2014, 53:157-163.
    [19] SRINIVASACHAR S, HELBLE J J, BONI A A, et al. Mineral behavior during coal combustion, 2. Illite transformations[J]. Progress in Energy and Combustion Science, 1993, 16:293-302.
    [20] LI W D, LI M, LI W F, et al. Study on the ash fusion temperatures of coal and sewage sludge mixtures[J]. Fuel, 2010, 89:1566-1572.
    [21] 周永刚, 范建勇, 李培, 等. 高碱金属准东煤灰熔融过程的矿物质衍变[J].浙江大学学报, 2015, 49(8):1559-1564.

    ZHOU Y G, FAN J Y, LI P, et al. Mineral transmutation of high alkali Zhundong coal in ash melting process[J]. Journal of Zhejiang University, 2015, 49(8):1559-1564(in Chinese).

    [22] 汉春利, 张军, 刘坤磊, 等. 煤中钠存在形式的研究[J]. 燃料化学学报, 1999, 27(6):575-578.

    HAN C L, ZHANG J, LIU K L, et al. Modes of occurrence of sodium in coals[J]. Journal of Fuel Chemistry and Technology, 1999, 27(6):575-578(in Chinese).

    [23] 陈川,张守玉, 刘大海, 等新疆高钠煤中钠的赋存形态及其对燃烧过程的影响[J]. 燃料化学学报, 2013, 41(7):832-838.

    CHEN C, ZHANG S Y, LIU D H, et al. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. Journal of Fuel Chemistry and Technology, 2013, 41(7):832-838(in Chinese).

    [24] LI G Y, WANG C A, YAN Y, et al. Release and transformation of sodium during combustion of Zhundong coals[J]. Journal of the Energy Institute, 2016, 89:48-56.
  • 加载中
计量
  • 文章访问数:  2108
  • HTML全文浏览数:  2108
  • PDF下载数:  28
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-04-16

准东煤和煤矸石共燃对灰熔融特性和钠元素释放行为影响

    通讯作者: 张锴, E-mail: kzhang@ncepu.edu.cn
  • 1. 华北电力大学热电生产过程污染物监测与控制北京市重点实验室, 北京, 102206;
  • 2. 低品位能源利用技术及系统教育部重点实验室, 重庆大学, 重庆, 400044;
  • 3. 山西大学资源与环境工程研究所, 国家环境保护煤炭废弃物资源化高效利用技术重点实验室, 太原, 030006
基金项目:

国家自然科学基金委与山西煤基低碳联合基金重点项目(U1910215)和中央高校基本科研业务费专项(2018ZD03)资助.

摘要: 本文利用马弗炉试验台,在815℃和1000℃下进行了准东煤和煤矸石的共燃实验,并借助灰熔融特性分析仪、电感耦合等离子体分析仪(ICP-OES)、电子扫描显微镜-能谱仪(SEM-EDS)和X射线衍射仪(XRD)对掺混样品灰熔融特性(AFTs)、钠元素释放行为、表观形貌和矿物进行表征.结果表明:随着煤矸石掺混(CG)比例增加,准东煤(ZD)灰熔融温度呈先下降后升高的变化趋势,并在掺混比例达到15%时达到最低值,说明煤矸石掺混比例与掺混样品(ZD/CG)灰熔融温度间呈非线性关系;通过SEM-EDS与XRD表征可知,随着煤矸石掺混比例增加,高温下掺混样品中耐熔矿物(硫铝酸钙、镁黄长石方镁石、石英和赤铁矿等)和助熔矿物(钙黄长石和钠长石等)之间相互转化是影响掺混样品灰熔融温度的主要原因;无论何种掺混比例,残余灰中钠元素含量实测值(RNa/exp)均大于理论值(RNa/cal),且二者偏差率(ηdev)均为正数,表明准东煤与煤矸石在高温下发生了抑制掺混样品中的钠元素向气相释放的协同反应.

English Abstract

参考文献 (24)

目录

/

返回文章
返回