MIL-53(Fe)/g-C3N4复合材料的制备及其光催化性能

彭钦天, 田海林, 顾彦, 黑梦云, 黄应平. MIL-53(Fe)/g-C3N4复合材料的制备及其光催化性能[J]. 环境化学, 2020, (8): 2120-2128. doi: 10.7524/j.issn.0254-6108.2019102102
引用本文: 彭钦天, 田海林, 顾彦, 黑梦云, 黄应平. MIL-53(Fe)/g-C3N4复合材料的制备及其光催化性能[J]. 环境化学, 2020, (8): 2120-2128. doi: 10.7524/j.issn.0254-6108.2019102102
PENG Qintian, TIAN Hailin, GU Yan, HEI Mengyun, HUANG Yingping. Preparation and photocatalytic properties of MIL-53(Fe)/g-C3N4 composites[J]. Environmental Chemistry, 2020, (8): 2120-2128. doi: 10.7524/j.issn.0254-6108.2019102102
Citation: PENG Qintian, TIAN Hailin, GU Yan, HEI Mengyun, HUANG Yingping. Preparation and photocatalytic properties of MIL-53(Fe)/g-C3N4 composites[J]. Environmental Chemistry, 2020, (8): 2120-2128. doi: 10.7524/j.issn.0254-6108.2019102102

MIL-53(Fe)/g-C3N4复合材料的制备及其光催化性能

    通讯作者: 黄应平, E-mail: chem_ctgu@126.com
  • 基金项目:

    国家自然科学基金(21972073,21677086,21577078),湖北省创新群体滚动项目(2015CFA021),中国博士后科学基金(2018M640721)和湖北省博士后科技活动项目择优(G83)资助.

Preparation and photocatalytic properties of MIL-53(Fe)/g-C3N4 composites

    Corresponding author: HUANG Yingping, chem_ctgu@126.com
  • Fund Project: Supported by the National Natural Science Foundation of China (21972073, 21677086, 21577078),Hubei Innovative Group Rolling Project (2015CFA021),China Postdoctoral Science Foundation (2018M640721) and Postdoctoral Science Foundation of Hubei province (G83).
  • 摘要: 本文采用溶剂热法制备了MIL-53(Fe)与g-C3N4不同质量比(0.80、2.40、4.00)的MIL-53(Fe)/g-C3N4复合材料(分别标记为MIL-53(Fe)/g-C3N4-1、MIL-53(Fe)/g-C3N4-2、MIL-53(Fe)/g-C3N4-3),并采用X射线衍射仪(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、比表面积分析仪(BET)、荧光光谱(PL)和紫外-可见漫反射光谱(UV-vis DRS)对其结构及形貌、吸附特性和光化学特性等进行了表征.在可见光(λ﹥420 nm)的光照条件下,研究了MIL-53(Fe)/g-C3N4复合材料对罗丹明B(rhodamine B,RhB)和小分子农药草甘膦(glyphosate)有机污染物的光催化降解特性,发现MIL-53(Fe)/g-C3N4-2在60 min内对RhB的降解率达到99.73%(k=0.10 min-1),降解速率分别是g-C3N4k=0.06 min-1)和MIL-53(Fe)(k=0.02 min-1)的1.67倍和5.00倍.同样在可见光照射下,MIL-53(Fe)/g-C3N4-2也可以有效降解草甘膦,在360 min内对草甘膦的降解率为41.47%(k=1.44×10-3 min-1),降解速率约是g-C3N4k=2.43×10-4 min-1)和MIL-53(Fe)(k=2.39×10-4 min-1)的6.00倍.结果表明,当MIL-53(Fe)与g-C3N4的复合质量比为2.40时,所制备的MIL-53(Fe)/g-C3N4复合材料在可见光下具有最佳的光催化活性,这归因于MIL-53(Fe)和g-C3N4的有效复合,促进了光生电子空穴的分离,还增加了比表面积,提高了光催化活性.结合自由基捕获实验,发现该催化体系降解过程中超氧自由基(·O2-)和空穴(h+)占主导作用.
  • 加载中
  • [1] SHARMA V K, FENG M B. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes:A review[J]. Journal of Hazardous Materials, 2019, 372:3-16.
    [2] LIU N, JING C W, LI Z M, et al. Effect of synthesis conditions on the photocatalytic degradation of Rhodamine B of MIL-53(Fe)[J]. Materials Letters, 2019, 237:92-95.
    [3] TANG J T, WANG J L. Metal organic framework with coordinatively unsaturated sites as efficient fenton-like catalyst for enhanced degradation of sulfamethazine[J]. Environmental Science & Technology, 2018, 52(9):5367-5377.
    [4] WANG D D, JIA F Y, WANG H. et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. Journal of Colloid and Interface Science, 2018, 519:273-284.
    [5] ZHANG C, LI Y, SHUAI D M. et al.Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control:A review[J].Chemosphere, 2019, 214:462-479.
    [6] 吴斌,方艳芬,任慧君,等. g-C3N4光催化降解2,4-DCP的活性及机理[J]. 环境化学,2017,36(7):1484-1491.

    WU B, FANG Y F, REN H J, et al. Activity and mechanism of photocatalytic degradation for 2,4-DCP over g-C3N4[J]. Environmental Chemistry, 2017, 36(7):1484-1491(in Chinese).

    [7] ZHANG X D, YANG Y, HUANG W Y. g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation[J]. Materials Research Bulletin, 2018, 99:349-358.
    [8] LIU X, ZHANG J, DONG Y M. A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C3N4 with highly enhanced photocatalytic activity under simulated sunlight[J]. New Journal of Chemistry, 2018, 42(14):12180-12187.
    [9] HUANG W Y, LIU N, ZHANG X D, et al. Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(Ⅵ) reduction under visible light[J]. Applied Surface Science, 2017, 425:107-116.
    [10] BAI C P, BI J C, WU J B, et al. Fabrication of noble-metal-free g-C3N4-MIL-53(Fe) composite for enhanced photocatalytic H2-generation performance[J]. Applied Organometallic Chemistry, 2018, 32(12):e4597.
    [11] AI L H, LI L L, ZHANG C H. MIL-53(Fe):A metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing[J]. Chemistry-A European Journal, 2013, 19(45):15105-15108.
    [12] LIU B K, WU Y J, HAN X L, et al. Facile synthesis of g-C3N4/amine-functionalized MIL-101(Fe) composites with efficient photocatalytic activities under visible light irradiation[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(20):17591-17601.
    [13] MARYAM S, ALI E, AHMAD J J, et al. Application of MIL-53(Fe)/urchin-like g-C3N4 nanocomposite for efficient degradation of cefixime[J]. Inorganic Chemistry Communications, 2020, 111:107565.
    [14] JIN J, LIANG Q, DING C Y, et al. Simultaneous synthesis-immobilization of Ag nanoparticles functionalized 2D g-C3N4 nanosheets with improved photocatalytic activity[J]. Journal of Alloys and Compounds, 2017, 691:763-771.
    [15] WANG Y J, SHI R, LIN J, et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4[J]. Energy & Environmental Science, 2011, 4(8):2922-2929.
    [16] NGUYENN M T H, NGUYEN Q T. Efficient refinement of a metal-organic framework MIL-53(Fe) by UV-vis irradiation in aqueous hydrogen peroxide solution[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2014, 288:55-59.
    [17] LI X H, GUO W L, GAO X M, et al. Phosphotungstic acid encapsulated in MIL-53(Fe) as efficient visible-light photocatalyst for rhodamine B degradation[J]. Environmental Progress & Sustainable Energy, 2017, 36(5):1342-1350.
    [18] MIAO S C, ZHA Z X, LI Y, et al. Visible-light-driven MIL-53(Fe)/BiOCl composite assisted by persulfate:Photocatalytic performance and mechanism[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 280:111862.
    [19] 谢治杰, 冯义平, 张钱新,等. Z型MoO3/g-C3N4复合催化剂用于可见光降解萘普生的机制研究[J]. 环境化学,2019,38(8):1724-1734.

    XIE Z J, FENG Y P, ZHANG Q X, et al. Photocatalytic degradation mechanism of naproxen using Z-scheme MoO3/g-C3N4 under visiblelight irradiation[J]. Environmental Chemistry, 2019, 38(8):1724-1734(in Chinese).

    [20] XIN Y N, HUANG Y, LIN K, et al. Self-template synthesis of double-layered porous nanotubes with spatially separated photoredox surfaces for efficient photocatalytic hydrogen production[J]. Science Bulletin, 2018, 63(10):601-608.
  • 加载中
计量
  • 文章访问数:  2549
  • HTML全文浏览数:  2549
  • PDF下载数:  72
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-21

MIL-53(Fe)/g-C3N4复合材料的制备及其光催化性能

    通讯作者: 黄应平, E-mail: chem_ctgu@126.com
  • 1. 三峡大学生物与制药学院, 宜昌, 443002;
  • 2. 三峡大学水利与环境学院, 宜昌, 443002;
  • 3. 三峡库区生态环境教育部工程研究中心(三峡大学), 宜昌, 443002
基金项目:

国家自然科学基金(21972073,21677086,21577078),湖北省创新群体滚动项目(2015CFA021),中国博士后科学基金(2018M640721)和湖北省博士后科技活动项目择优(G83)资助.

摘要: 本文采用溶剂热法制备了MIL-53(Fe)与g-C3N4不同质量比(0.80、2.40、4.00)的MIL-53(Fe)/g-C3N4复合材料(分别标记为MIL-53(Fe)/g-C3N4-1、MIL-53(Fe)/g-C3N4-2、MIL-53(Fe)/g-C3N4-3),并采用X射线衍射仪(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、比表面积分析仪(BET)、荧光光谱(PL)和紫外-可见漫反射光谱(UV-vis DRS)对其结构及形貌、吸附特性和光化学特性等进行了表征.在可见光(λ﹥420 nm)的光照条件下,研究了MIL-53(Fe)/g-C3N4复合材料对罗丹明B(rhodamine B,RhB)和小分子农药草甘膦(glyphosate)有机污染物的光催化降解特性,发现MIL-53(Fe)/g-C3N4-2在60 min内对RhB的降解率达到99.73%(k=0.10 min-1),降解速率分别是g-C3N4k=0.06 min-1)和MIL-53(Fe)(k=0.02 min-1)的1.67倍和5.00倍.同样在可见光照射下,MIL-53(Fe)/g-C3N4-2也可以有效降解草甘膦,在360 min内对草甘膦的降解率为41.47%(k=1.44×10-3 min-1),降解速率约是g-C3N4k=2.43×10-4 min-1)和MIL-53(Fe)(k=2.39×10-4 min-1)的6.00倍.结果表明,当MIL-53(Fe)与g-C3N4的复合质量比为2.40时,所制备的MIL-53(Fe)/g-C3N4复合材料在可见光下具有最佳的光催化活性,这归因于MIL-53(Fe)和g-C3N4的有效复合,促进了光生电子空穴的分离,还增加了比表面积,提高了光催化活性.结合自由基捕获实验,发现该催化体系降解过程中超氧自由基(·O2-)和空穴(h+)占主导作用.

English Abstract

参考文献 (20)

目录

/

返回文章
返回