-
沉积物是水生态系统的重要组成部分,为水生动植物生长提供了场所[1],污染物进入水体后经过复杂的反应和转变最终沉淀于沉积物中。重金属在环境中不易降解,在水体中与悬浮颗粒共沉降于沉积物中,水环境改变时,沉积物中的重金属再次释放,造成二次污染[2-3]。孔明、罗燕等研究发现重金属在水体中积累一定的程度会对水生动植物产生严重危害,并通过食物链影响人体健康[4-6]。因此,测量重金属含量并对其污染特征进行研究和生态风险进行评价显得尤为重要[7]。表层沉积物能够蓄积大量的总磷和总氮,但当水环境改变时,二者会重新进入水体中,而水体中总氮、总磷浓度高是引起水体“水华”现象的重要因素[8-9]。
现阶段的研究对于沉积物中总磷和总氮的评价方法较多,主要包括有机氮评价方法、有机碳评价方法、有机指数法、综合污染指数评价方法等[8]。对于重金属的评价方法主要有生态风险指数法、地积累指数法、污染负荷指数和沉积物质量基准等[9-12]。而判断沉积物中重金属来源主要使用统计学分析方法,如相关分析、主成分分析和聚类分析统计等[13-14]。
洞庭湖位于湖南省东北部,长江中游荆江南岸(28°30′N—30°20′N、110°40′E—113°10′E),是我国第二大淡水湖[8],由于人类活动的影响,已经明显分化为东、西、南的3个湖区。近年来大量的学者针对洞庭湖营养盐或者重金属进行了相关研究[15-18],例如欧阳美凤等主要针对东洞庭湖及入湖口的重金属进行分析[19],王勤等针对洞庭湖湘江入湖段的重金属进行了研究[20]。张光贵等对洞庭湖近20年的氮磷进行分析[8],李芬芳等对洞庭湖及其入湖口的氮磷进行了分析[16],蔡佳等针对西洞庭湖的氮磷进行了研究[21]。但是针对洞庭湖湖体的重金属研究较少,将洞庭湖湖体的重金属和氮磷营养盐综合起来评价洞庭湖风险的研究也很少[19-23]。本研究通过对2018年洞庭湖整个湖体表层沉积物中TN、TP、Cu、Zn、Pb、Cr、Cd、Ni、Hg、As含量的测定,利用主成分分析TN、TP和重金属的分布特征,并借助营养盐综合污染指数、地积累指数法以及潜在生态风险指数法对沉积物中TN、TP和重金属生态风险进行评价。以期研究结果能够为洞庭湖水体污染分区、重点突出地进行管理提供依据。
洞庭湖表层沉积物中营养元素、重金属的污染特征与评价分析
Characteristics and risk assessment of nutrients and heavy metals pollution in sediments of Dongting Lake
-
摘要:
为了解近年来洞庭湖表层沉积物中氮、磷及重金属污染情况,对洞庭湖15个采样点表层沉积物中TN、TP和重金属(Cu、Zn、Pb、Cd、Ni、Cr、Hg、As)质量分数进行分析,并运用有机指数和综合营养法对TN、TP的污染程度进行评价,采用重金属潜在生态风险指数法、综合地积累指数法对重金属进行生态风险评价,利用主成分分析重金属的来源。结果表明,洞庭湖表层沉积物中w(TN)和w(TP)的范围分别介于576—1526 mg·kg−1,482—982 mg·kg−1之间。空间分布上,TN和TP总体均表现为东洞庭湖>南洞庭湖>西洞庭湖。洞庭湖表层沉积物中重金属含量在0.08—378.5 mg·kg−1之间,Cu、Ni呈现东洞庭湖>南洞庭湖>西洞庭湖,Cd、Hg、Pb、As呈现南洞庭湖>东洞庭湖>西洞庭湖,Cr呈现东洞庭湖>西洞庭湖>南洞庭湖,Zn呈现南洞庭湖>西洞庭湖>东洞庭湖。洞庭湖表层沉积物中有机氮Ⅳ级污染点位约占所有点位的20%,有机氮Ⅲ级污染点位占比约为73.3%。营养盐综合污染指数等级为中度污染,空间分布整体呈现为东洞庭湖>南洞庭湖>西洞庭湖。洞庭湖表层沉积物中重金属风险RI值为483,潜在重金属生态风险为重污染,潜在重金属生态风险等级空间整体呈现为南洞庭湖>西洞庭湖>东洞庭湖。地积累指数表明洞庭湖表层沉积物重金属总体呈现偏重污染,空间分布为南洞庭湖>东洞庭湖>西洞庭湖。研究表明,洞庭湖表层沉积物营养盐综合污染呈现中等污染,重金属污染呈现重污染状态,Cd、Hg两种重金属的风险最高,洞庭湖表层沉积物重金属生态风险主要是这两种重金属造成的。
Abstract:To study the pollution status of nitrogen, phosphorus and heavy metals in surface sediment of Dongting Lake, the contents of total nitrogen (TN), total phosphorus (TP) and heavy metals (including Cu, Zn, Pb, Cd, Ni, Cr, Hg and As) in sediment of 15 sample sites in Dongting Lake were analyzed. Comprehensive pollution index (FF)and organic index were selected to evaluate pollution grade of TN and TP. Potential ecological risk index (RI) and comprehensive geoaccumulation index (Itot) were employed to assess health risk of heavy metal pollution. The source of heavy metals was analyzed by Principal component analysis (PCA). The results indicated that the contents of TN and TP ranged from 576 mg·kg−1 to 1526 mg·kg−1 and 482 mg·kg−1 to 982 mg·kg−1, respectively. The spatial distributions of TN and TP presented similar patterns in the order of East Dongting Lake>South Dongting Lake>West Dongting Lake. The contents of heavy metals in sediments of Dongting Lake ranged from 0.08 mg·kg−1 to 378.5 mg·kg−1. Spatially, the contents of Cu and Ni ranked as an order: East Dongting Lake > South Dongting Lake >West Dongting Lake. The contents of Cd, Hg, Pb and As showed similar spatial trend, they all decreased in the order of South Dongting Lake > East Dongting Lake > West Dongting Lake. The content of Cr was ranked as an order as follow: East Dongting Lake > West Dongting Lake > South Dongting Lake. The content of Zn ranked as an order: South Dongting Lake > West Dongting Lake > East Dongting Lake. The results of organic index indicated that sampling sites evaluated as organic nitrogen Ⅳ level accounted for 20%, and sites of organic nitrogen Ⅲ level accounted for 73.3%. Comprehensive pollution index indicated moderate pollution, and the pollution level of spatial distribution ranked as an order: East Dongting Lake > South Dongting Lake>West Dongting Lake. The result of RI of Dongting Lake was 483, indicated that potential ecological risk level of Dongting Lake was heavy, and RI values decreased in the order of South Dongting Lake >west Dongting Lake>East Dongting Lake. The results of Itot indicated that contamination of heavy metals in sediments of Dongting Lake was serious, and Itot value decreased in the order of South Dongting Lake >East Dongting Lake>West Dongting Lake. The research showed that comprehensive nutrient pollution in surface sediment of Dongting Lake was moderate, and metals pollution in surface sediment of Dongting Lake was serious. Hg and Cd were the highest risk elements, and the ecological risk of heavy metals in surface sediments of Dongting Lake was mainly caused by these two kinds of heavy metals.
-
Key words:
- Dongting Lake /
- surface sediment /
- total nitrogen /
- total phosphorus /
- heavy metals /
- risk assessment
-
表 1 表层沉积物综合污染程度分级
Table 1. Classification of comprehensive pollution of surface sediments
污染程度Pollution Level 总氮单项指数STN 总磷单项指数STP 营养盐综合指数FF 清洁 STN<1.0 STP<0.5 FF<1.0 轻度污染 1.0<STN<1.5 0.5<STP<1.0 1.0<FF<1.5 中度污染 1.5<STN≤2.0 1.0<STP≤1.5 1.5<FF≤2.0 重度污染 STN>2.0 STP>1.5 FF>2.0 表 2 Igeo与重金属污染程度关系
Table 2. The relationship between Igeoand heavy metal pollution
Igeo ≤0 0—1 1—2 2—3 3—4 4—5 污染级数 0 1 2 3 4 5 程度 清洁 轻度 中度 偏重度 重度 严重 表 3 Er与RI的分级标准
Table 3. Individual induce and grades of Erand RI
Er RI 范围
Range生态风险水平
Ecological risk level级数
Grade范围
Range生态风险水平
Ecological risk level级数
GradeEr<40 低 0 RI<150 低 0 40≤Er<80 中等 1 150≤RI<300 中等 1 8≤Er<160 较重 2 300≤RI<600 重 2 160≤Er<320 重 3 RI≥600 严重 3 Er≥320 严重 4 表 4 洞庭湖表层沉积物中重金属的含量(mg.kg−1)
Table 4. Contents of heavy metals in the sediments of Dongting Lake (mg.kg−1)
采样断面Sample Sections Cu Zn Pb Cd Cr Ni Hg As S1 58.55 378.5 82.05 8.71 117.5 47.50 0.45 67.54 S2 43.9 149.5 26.65 3.40 89.55 33.30 0.25 25.86 S3 30.85 146.5 26.75 1.92 85.55 30.75 0.46 12.91 S4 37.25 101.25 22.10 0.56 100.50 36.45 0.15 10.79 S5 42.25 122.00 24.85 0.67 101.05 37.35 0.81 10.10 S6 29.20 158.00 23.55 1.77 83.00 29.25 0.47 12.00 S7 32.90 140.50 30.45 1.70 89.20 33.85 0.56 14.58 S8 30.20 134.50 29.25 1.29 84.85 29.40 0.27 12.57 S9 33.20 122.50 36.75 0.84 90.00 33.65 0.25 18.91 S10 30.25 111.55 42.10 1.65 75.10 26.15 0.19 23.04 S11 45.45 160.50 52.25 2.10 105.25 38.95 0.21 32.61 S12 32.65 127.00 42.45 1.10 82.60 28.30 0.16 17.80 S13 40.20 124.00 41.15 1.20 94.30 34.90 0.24 25.78 S14 38.30 72.10 20.20 0.60 102.90 38.55 0.08 11.62 S15 44.55 159.50 40.20 1.18 100.65 38.75 0.20 22.40 平均值 37.98 147.19 36.05 1.91 93.47 34.47 0.32 21.23 东洞庭湖 40.23 172.84 38.25 1.24 97.14 35.89 9.48 12.86 南洞庭湖 38.17 131.94 24.31 2.93 91.03 33.97 5.54 6.33 西洞庭湖 34.89 172.84 41.21 1.23 92.52 34.60 13.05 14.53 表 5 洞庭湖综合污染分级
Table 5. Standard and level of comprehensive pollution in sediments
项目Items 综合污染程度分级Level of comprehensive pollution 东洞庭湖East Dongting Lake 南洞庭湖SouthDongting Lake 西洞庭湖WestDongting Lake 洞庭湖全湖Dongting Lake STN 1.03 1.04 0.87 1.03 STP 1.78 1.69 1.47 1.66 FF 1.63 1.54 1.33 1.51 污染等级 中度污染 中度污染 轻度污染 中度污染 表 6 洞庭湖表层沉积物中营养盐与重金属的皮尔逊相关性(n=15)
Table 6. Pearson correlation matrix for heavy metals(n=15)
项目Item Cu Zn Pb Cd Cr Ni Hg As Cu 1 0.695** 0.665** 0.694** 0.877** 0.901** 0.076 0.795** Zn 1 0.830** 0.953** 0.524* 0.596* 0.280 0.894** Pb 1 0.783** 0.466 0.522* -0.033 0.938** Cd 1 0.473 0.552* 0.187 0.913** Cr 1 0.985** 0.084 0.566* Ni 1 0.119 0.634* Hg 1 -0.018 As 1 *P<0.05;**P<0.01. -
[1] 李芬芳, 符哲, 李利强, 等. 洞庭湖表层沉积物重金属污染状况评估 [J]. 环境化学, 2017, 36(11): 2462-2471. doi: 10.7524/j.issn.0254-6108.2017041902 LI F F, FU Z, LI L Q, et al. Assessment on heavy metal pollution in the surface sediments of Dongting Lake [J]. Environmental Chemistry, 2017, 36(11): 2462-2471(in Chinese). doi: 10.7524/j.issn.0254-6108.2017041902
[2] RAMAMOORTHY S, RUST B R. Heavy metal exchange processes in sediment water systems [J]. Environmental Geology, 1978, 2(3): 165-172. doi: 10.1007/BF02430670 [3] ROTHW WELL J J, EVANS M G, ALLOTT T E H. Sediment-water interaction in an eroded and metal contaminated peatland catchment, Southern Pennines, UK [J]. Water, Air & Soil Pollution: Foucs, 2006, 6(5/6): 669-676. [4] 刘立华. 白洋淀湿地水资源承载能力及水环境研究[D]. 上海: 中国科学院上海冶金研究所, 2000. LIU L H. Study on water resource carrying capacity and water environment of the Baiyang Wetland[D]. Shanghai: Shanghai Institute of Metallurgy, Chinese Academy of Sciences, 2000 (in Chinese).
[5] 孔明, 彭福全, 张毅敏, 等. 环巢湖流域表层沉积物重金属赋存特征及潜在生态风险评价 [J]. 中国环境科学, 2015, 35(6): 1863-1871. doi: 10.3969/j.issn.1000-6923.2015.06.032 KONG M, PENG F Q, ZHANG Y M, et al. Occurrence characteristic and potential risk assessment of heavy metals in surface sediments of Circum-Chaohu [J]. China Environment Science, 2015, 35(6): 1863-1871(in Chinese). doi: 10.3969/j.issn.1000-6923.2015.06.032
[6] 罗燕, 秦延文, 张雷, 等. 大伙房水库表层沉积物重金属污染分析与评价 [J]. 环境科学学报, 2011, 31(5): 987-995. LUO Y, QIN Y W, ZHANG L, et al. Analysis and assessment of heavy metal pollution in surface sediments of the Dahuofang reservoir [J]. Acta Scientiae Circumstantiae, 2011, 31(5): 987-995(in Chinese).
[7] ZHENG N, WANG Q, LIANG Z, et al. Characterization ofheavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China [J]. Environmental Pollution, 2008, 154(1): 135-142. doi: 10.1016/j.envpol.2008.01.001 [8] 张光贵, 卢少勇, 田琪. 近20年洞庭湖总氮和总磷浓度时空变化及其影响因素分析 [J]. 环境化学, 2016, 35(11): 2377-2385. doi: 10.7524/j.issn.0254-6108.2016.11.2016040501 ZHANG GG, LU S Y, TIAN Q. Analysis of spatial-temporal variations of total nitrogen and total phosphorus concentrations and their influencing factors in Dongting Lake in the past two decades [J]. Environmental Chemistry, 2016, 35(11): 2377-2385(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.11.2016040501
[9] 甘树, 卢少勇, 秦普丰, 等. 太湖西岸湖滨带沉积物氮磷有机质分布及评价 [J]. 环境科学, 2012, 33(9): 3064-3069. GAN S, LU S Y, QIN P F, et al. Spatial distribution and evaluation of nitrogen, phosphorus and organic matter in surface sediments from western lakeside belt of Lake Taihu [J]. Environmental Science, 2012, 33(9): 3064-3069(in Chinese).
[10] ZHANG N N, ZANG S Y, SUN Q Z. Health risk assessment of heavy metals in the water environment of Zhalong Wetland, China [J]. Ecotoxicology, 2014, 23(4): 518-526. doi: 10.1007/s10646-014-1183-0 [11] IQBAL J, SHAN M H. Study of seasonal variations and health risk assessment of heavy metals in Cyprinuscarpio from Rawal Lake, Pakistan [J]. Environmental Monitoring and Assessment, 2014, 186(4): 2025-2037. doi: 10.1007/s10661-013-3515-6 [12] KUKRER S, SEKER S, ABACI Z T, et al. Ecological risk assessment of heavy metals in surface sediments of northern littoral zone of Lake CildirArdahan, Turkey [J]. Environment Monitoring and Assessment, 2014, 186(6): 3847-3857. doi: 10.1007/s10661-014-3662-4 [13] LIU M X, YANG YY, YUN X Y, et al. Distribution and ecological assessment of heavy metals in surface sediments of the East Lake, China [J]. Ecotoxicology, 2014, 23(1): 92-101. doi: 10.1007/s10646-013-1154-x [14] GERGEN I, HARMANESCU M. Application of principal component analysis (PCA) for the estimation of source of heavy metal contamination in marine sediments [J]. Environmental Science, 2006, 27(1): 137-141. [15] SINGH K P, MALIK A, SINHA S, et al. Estimation of source of heavy metal contamination in sediments of Gomti River (India) using principal component analysis [J]. Water, Air & Soil Pollution, 2005, 166: 1-4. [16] 李芬芳, 黄代中, 连花, 等. 洞庭湖及其入湖口表层沉积物氮、磷、有机质的分布及污染评价 [J]. 生态环境学报, 2018, 27(12): 2307-2313. LI F F, HUANG D Z, LIAN H, et al. Distribution characteristics and pollution assessment of nitrogen, phosphorus and organic matters in the surface sediments of Dongting Lake and its lake inlets [J]. Ecology and Environment Science, 2018, 27(12): 2307-2313(in Chinese).
[17] 郭晶, 李利强, 黄代中, 等. 洞庭湖表层水和底泥中重金属污染状况及其变化趋势 [J]. 环境科学研究, 2016, 29(1): 44-51. GUO J, LI L Q, HUANG D Z, et al. Assessment of heavy metal pollution in surface water and sediment of DongtingLake [J]. Research of Environment Sciences, 2016, 29(1): 44-51(in Chinese).
[18] 连花, 郭晶, 黄代中, 等. 洞庭湖表层沉积物中重金属变化趋势及风险评估 [J]. 环境科学研究, 2019, 32(1): 126-134. LIAN H, GUO J, HUANG D Z, et al. Variation trend and risk assessment of heavy metals in surface sediments of Dongting Lake [J]. Research of Environment Sciences, 2019, 32(1): 126-134(in Chinese).
[19] 欧阳美凤, 谢意南, 李利强, 等. 东洞庭湖及其入湖口水域表层沉积物中重金属的分布特征与生态风险 [J]. 生态环境学报, 2016, 25(7): 1195-1201. OUYANG M F, XIE Y N, LI L Q, et al. Distribution characteristics and Ecological risk of heavy metals in surface sediment of East Dongting Lake and its inlet [J]. Ecology and Environmental Science, 2016, 25(7): 1195-1201(in Chinese).
[20] 王勤, 彭渤, 方小红, 等. 湘江长沙段沉积物重金属污染特征及其评价 [J]. 环境化学, 2020, 39(4): 999-1011. doi: 10.7524/j.issn.0254-6108.2019101901 WANG Q, PENG B, FANG X H, et al. Characteristic and evaluation of heavy metals in sediment of Changsha. section of Xiangjiang river [J]. Environmental Chemistry, 2020, 39(4): 999-1011(in Chinese). doi: 10.7524/j.issn.0254-6108.2019101901
[21] 蔡佳, 王丽婧, 陈建湘, 等. 西洞庭湖入湖河流磷的污染特征 [J]. 环境科学研究, 2018, 31(1): 70-78. CAI J, WANG L J, CHEN J X, et al. Characteristics of phosphorus pollution in rivers entering the West Dongting Lake [J]. Research of Environmental Science, 2018, 31(1): 70-78(in Chinese).
[22] QIAN Y, ZHENG M H, GAO L R, et al. Heavy metal contamination and its environment risk assessment in surface sediments from Lake Dongting, People’s Republic of China [J]. Bulletion of Environmental Contamination and Toxicology, 2005, 75(1): 204-210. doi: 10.1007/s00128-005-0739-3 [23] YAO Z G. Comparison between BCR sequention extraction and geo-accumulation method to evaluate metal mobility in sediments of Dongting Lake, Central China [J]. Chinese Journal of Oceanology and Limnology, 2008, 26(1): 14-22. doi: 10.1007/s00343-008-0014-7 [24] 于佳佳, 尹洪斌, 高永年, 等. 太湖流域沉积物营养盐和重金属污染特征研究 [J]. 中国环境科学, 2017, 37(6): 2287-2294. doi: 10.3969/j.issn.1000-6923.2017.06.037 YU J J, YIN H B, GAO Y N, et al. Characteristics of nutrient and heavy metals pollution in sediments of Taihu watershed [J]. China Environmental Science, 2017, 37(6): 2287-2294(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.06.037
[25] MULLER G. Index of geoaccumulation in sediments of the Rhine River [J]. Geojournal, 1969, 2(3): 109-118. [26] HAKANSON L. An ecological risk index for aquatic pollution control a sedimentologicalapproach [J]. Water Research, 1980, 14(8): 975-986. doi: 10.1016/0043-1354(80)90143-8 [27] 张光贵, 谢意南, 莫永涛. 洞庭湖湘江入湖口至出口水域表层沉积物中重金属空间分布特征与生态风险 [J]. 环境化学, 2015, 34(4): 803-805. doi: 10.7524/j.issn.0254-6108.2015.04.2014123101 ZHANG GG, XIE Y N, MO Y T. Spatial distribution characteristics and ecological risk of heavy metals in surface sediments from the inlet to the outlet of Xiangjaing river in DongtingLake [J]. Environmental Chemistry, 2015, 34(4): 803-805(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.04.2014123101
[28] HU C, DENG Z M, XIE Y H, et al. The risk assessment of sediment heavy metal pollution in the East Dongting Lake wetland [J]. Journal of Chemistry, 2015, 2015(15): 1-8. [29] LI F, HUANG J H, ZENG G M, et al. Intergrated source apportionment, screening risk assessment, and risk mapping of heavy metals in surface sediments: a case study of the Dongting Lake, Middle China [J]. Hunan and Ecological Risk Assessment: An Internation Journal, 2014, 20(5): 1213-1230. doi: 10.1080/10807039.2013.849479 [30] 黄代中, 万群, 李利强, 等. 洞庭湖近20 年水质与富营养化状态变化 [J]. 环境科学研究, 2013, 26(1): 27-33. HUANG D Z, WAN Q, LI L Q, et al. Changes of water quality and eutrophic state in recent 20 years of Dongting Lake [J]. Research of Environmental Science, 2013, 26(1): 27-33(in Chinese).
[31] 田琪, 李利强, 欧伏平, 等. 洞庭湖氮磷时空分布及形态组成特征 [J]. 水生态学杂志, 2016, 37(3): 17-25. TIAN Q, LI L Q, OU F P, et al. Temporal-spatial distribution and speciation of nitrogen and phosphorus in Dongting Lake [J]. Journal of Hydroecology, 2016, 37(3): 17-25(in Chinese).
[32] LU X Q, WERNER T, YOUNG T M. Geochemistry and bioavailability of metals in sediments from northern SanFrancisco bay [J]. Environment International, 2005, 31(4): 593-602. doi: 10.1016/j.envint.2004.10.018 [33] 谢意南, 欧阳美凤, 黄代中, 等. 洞庭湖及其入湖口沉积物中重金属的污染特征、来源、与生态风险 [J]. 环境化学, 2017, 36(10): 2253-2264. doi: 10.7524/j.issn.0254-6108.2017020303 XIE Y N, OUYANG M F, HUANG D Z, et al. Pollution characteristics, sources and ecological risk of heavy metals in sediments from Dongting Lake and its lake inlet [J]. Environmental Chemistry, 2017, 36(10): 2253-2264(in Chinese). doi: 10.7524/j.issn.0254-6108.2017020303
[34] 郭掌珍, 张渊, 李维宏, 等. 汾河表层沉积物中营养盐和重金属的含量、来源和生态风险 [J]. 水土保持学报, 2013, 27(3): 95-99. GUO ZZ, ZHANG Y, LI W H, et al. Concentration, sources and ecological risk of nutrients and heavy metals in surface sediments from Fenhe River [J]. Journal of Soil and Water Conservation, 2013, 27(3): 95-99(in Chinese).
[35] 王佩, 卢少勇, 王殿武, 等. 太湖湖滨带底泥氮、磷、有机质分布与污染评价 [J]. 中国环境科学, 2012, 32(4): 703-709. doi: 10.3969/j.issn.1000-6923.2012.04.020 WANG P, LU S Y, WANG D W, et al. Nitrogen, phosphorous and organic matter spatial distribution characteristics and their pollution status evaluation of sediment nutrients in lakeside zones of Taihu Lake [J]. China Environmental Science, 2012, 32(4): 703-709(in Chinese). doi: 10.3969/j.issn.1000-6923.2012.04.020
[36] 田琪, 张光贵, 谢意南, 等. 洞庭湖主要入湖口表层沉积物重金属分布特征与生态风险评价 [J]. 生态毒理学报, 2017, 12(2): 191-200. doi: 10.7524/AJE.1673-5897.20160516003 TIAN Q, ZHANG GG, XIE Y N, et al. Distribution and ecological risk assessment of heavy metals in surface sediments from main tributary entrance of Dongting Lake [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 191-200(in Chinese). doi: 10.7524/AJE.1673-5897.20160516003
[37] LOSKA K, WIECHUŁA D. Application of principal componentanalysis for the estimation of source of heavy metalcontamination in surface sediments from the Rybnik Reservoir [J]. Chemosphere, 2003, 51(8): 723-733. doi: 10.1016/S0045-6535(03)00187-5