-
近年来,河流、湖泊等集水区沉积物(简称“底泥”)重金属污染问题一直是环境科学的研究热点,并因重金属具有富集性、隐蔽性、持久性和毒性等特点,而受到普遍关注[1-4]。底泥是水生态系统的重要组成部分,既是底栖生物和水生植物生长的重要物质基础[5],也是重金属等污染物的“源”与“汇”,当环境条件(氧化还原电位、pH、人为扰动)改变时,重金属可能会从底泥中释放到上覆水体中,引起二次污染,进而影响水环境质量[6-7]。
目前关于水域底泥重金属的环境影响研究主要以大型湖泊、河流研究较多,但关于城市景区底泥重金属含量特征及源解析的研究鲜有报道[8-10]。底泥中重金属的含量特征,可以反映出人为活动对流域环境的长时间影响[8]。所以研究水域底泥中重金属的含量、分布特征和来源,对保护城市水环境具有重要意义。从水动力条件看,城市景区水域通常具有动态河流及静水湖泊的双重属性,底泥重金属环境地球化学行为有别于河流、湖泊。因此本文以安徽省宿州市三角洲公园底泥为研究对象,探讨底泥重金属的分布和来源,评价其污染水平,以期为城市景区水域环境质量评价与管理提供科学依据。
宿州市城市景区水域底泥重金属含量特征及生态风险评价
Distribution and Ecological Risk Assessment of Heavy Metals in Sediment in Urban Scenic Area
-
摘要: 城市景区水域是城市水环境的重要组成部分,但关于城市景区水域底泥重金属的研究相对较少。因此,本文在宿州市三角洲公园水域采集底泥,测定了其中8种重金属元素(Pb、U、V、Mn、Ni、Cr、Cu 和 Zn)的含量,并利用自组织神经网络(SOM)、相关性分析、聚类分析、对研究区重金属的空间分布、污染水平及来源进行研究。结果表明,位于公园外的采样点重金属含量大于公园内部采样点;潜在生态风险指数法及地累积指数评价结果显示,三角洲公园水域底泥处在较轻的污染状态;通过正定矩阵分解模型(PMF)解析出3种污染因子,包括农业源、工业源和自然源,其中农业源及工业源为研究区沉积物中重金属的主要来源。Abstract: Urban scenic waters are an important part of the urban ecological environment, but there are relatively few studies on heavy metals in the sediments of urban scenic waters. therefore, surface sediments were collected from the waters of Delta Park in Suzhou City, testing the contents of Pb, U, V, Mn, Ni, Cr, Cu and Zn in surface sediments. ArcGIS, SOM and multivariate statistical analysis were used to study the spatial distribution, pollution levels and sources of heavy metals in the study area. The results showed that the heavy metal content of the sampling points in the estuary area was higher than that in the park; the potential ecological risk index and the geoaccumulation index evaluation results showed that the sediment of water area of the delta park was in a light pollution state; three pollution factors, including agricultural, industrial and natural sources, were analyzed by the positive matrix factorizing model, with contribution rates of 25.99 %、37.45 % and 36.58 % respectively, of which agricultural and industrial sources were the main sources of heavy metals in the sediments of the study area.
-
Key words:
- sediments /
- urban waters /
- heavy metals /
- distribution characteristics /
- ecological risk /
- source analysis /
- Suzhou City
-
表 1 重金属潜在生态风险系数(Eri) 和生态风险指数(RI)的等级划分[14]
Table 1. Classification of potential ecological risk coefficient (Eri) and ecological risk index (RI) of heavy metals
潜在生态风险系数(Eri)
Potential ecological risk coefficient (Eri)生态风险指数(RI)
Ecological risk index (RI)潜在生态风险程度
Potential ecological risk degree<40 <150 轻微 40—80 150—300 中等 80—160 300—600 强 160—320 600$ \ge $ 很强 320$ \ge $ — 极强 表 2 地累积指数的分类及污染等级的划分[16]
Table 2. Classification of the geoaccumulation index and division of pollution level
地累积指数
Igeo等级
Grade沉积物污染程度
Degree of sediment contamination 0$\le $ 0 无污染 0—1 1 无污染—轻污染 1—2 2 中污染 2—3 3 中污染—强污染 3—4 4 强污染 4—5 5 强污染—极强污染 >5 6 极强污染 表 3 三角洲底泥样品重金属含量的描述性统计(mg·kg−1)
Table 3. Descriptive statistics of heavy metal content in sediment samples
样品编号
SamplesPb U V Mn Ni Cr Cu Zn 最大值 27.14 2.90 91.40 809.15 35.84 75.87 40.73 113.62 最小值 15.78 1.78 51.27 468.73 16.63 37.31 12.92 39.16 平均值 21.36 2.40 74.58 669.63 27.75 56.43 24.67 69.86 标准差 3.14 0.30 11.05 92.48 5.46 9.41 7.63 19.19 变异系数(CV) 0.15 0.13 0.15 0.14 0.20 0.17 0.31 0.27 全国水系沉积物平均值[20] 23 2.4 77 653 23 54 20 67 背景值[17] 25.9 2.15 80.0 525.2 25.0 69.4 24.9 53.2 TEC[21] 35.8 — — — 22.7 43.4 31.6 121 PEC[21] 128 — — — 48.6 111 149 459 注:TEC (Threshold Effect Level):阈值效应水平;PEC (Probable Effect Level):可能效应水平. -
[1] LI C, SONG C W, YIN Y Y, et al. Spatial distribution and risk assessment of heavy metals in sediments of Shuangtaizi estuary, China [J]. Marine Pollution Bulletin, 2015, 98(1/2): 358-364. [2] 孟敏, 杨林生, 韦炳干, 等. 我国设施农田土壤重金属污染评价与空间分布特征 [J]. 生态与农村环境学报, 2018, 34(11): 1019-1026. doi: 10.11934/j.issn.1673-4831.2018.11.009 MENG M, YANG L S, WEI B G, et al. Contamination assessment and spatial distribution of heavy metals in greenhouse soils in China [J]. Journal of Ecology and Rural Environment, 2018, 34(11): 1019-1026(in Chinese). doi: 10.11934/j.issn.1673-4831.2018.11.009
[3] 李悦昭, 陈海洋, 孙文超. “河-湖” 沉积物重金属环境特征及来源解析 [J]. 环境科学, 2020, 41(6): 2646-2652. LI Y Z, CHEN H Y, SUN W C. Environmental characteristics and source apportionment of heavy metals in the sediments of a river-lake system [J]. Environmental Science, 2020, 41(6): 2646-2652(in Chinese).
[4] 姬超, 侯大伟, 李发志, 等. 耕地土壤重金属健康风险空间分布特征 [J]. 环境科学, 2020, 41(3): 1440-1448. JI C, HOU D W, LI F Z, et al. Assessment and spatial characteristics analysis of human health risk of heavy metals in cultivated soil [J]. Environmental Science, 2020, 41(3): 1440-1448(in Chinese).
[5] LI Y Y, GAO B, XU D Y, et al. Hydrodynamic impact on trace metals in sediments in the cascade reservoirs, North China [J]. The Science of the Total Environment, 2020, 716: 136914. doi: 10.1016/j.scitotenv.2020.136914 [6] XU D Y, GAO B, PENG W Q, et al. Geochemical and health risk assessments of antimony (Sb) in sediments of the Three Gorges Reservoir in China [J]. Science of the Total Environment, 2019, 660(APRa10): 1433-1440. [7] BING H J, ZHOU J, WU Y H, et al. Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China [J]. Environmental Pollution, 2016, 214: 485-496. doi: 10.1016/j.envpol.2016.04.062 [8] WIJESIRI B, LIU A, DEILAMI K, et al. Nutrients and metals interactions between water and sediment phases: An urban river case study [J]. Environmental Pollution, 2019, 251: 354-362. doi: 10.1016/j.envpol.2019.05.018 [9] DAI L J, WANG L Q, LI L F, et al. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China [J]. Science of the Total Environment, 2018, 621: 1433-1444. doi: 10.1016/j.scitotenv.2017.10.085 [10] USTAOGLU F, ISLAM M S. Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk [J]. Ecological Indicators, 2020(113): 106237. [11] NGUYEN T T, KAWAMURA A, TONG T N, et al. Identification of spatio-seasonal hydrogeochemical characteristics of the unconfined groundwater in the Red River Delta, Vietnam [J]. Applied Geochemistry, 2015, 63: 10-21. doi: 10.1016/j.apgeochem.2015.07.009 [12] 聂泽宇, 邬剑宇, 吴小东, 等. 荧光溶解性有机质EEMs的新旧自组织映射图解析方法比较研究 [J]. 环境科学学报, 2017, 37(1): 357-369. NIE Z Y, WU J Y, WU X D, et al. Comparative study on the interpretation of EEMs of fluorescent dissolved organic matter using the new and traditional self-organizing map methods [J]. Acta Scientiae Circumstantiae, 2017, 37(1): 357-369(in Chinese).
[13] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算 [J]. 环境科学与技术, 2008, 31(2): 112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030 XU Z Q, NI S J, TUO X G, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index [J]. Environmental Science & Technology, 2008, 31(2): 112-115(in Chinese). doi: 10.3969/j.issn.1003-6504.2008.02.030
[14] HUANG D W, GUI H R, LIN M L, et al. Chemical speciation distribution characteristics and ecological risk assessment of heavy metals in soil from Sunan mining area, Anhui Province, China [J]. Human and Ecological Risk Assessment: an International Journal, 2018, 24(6): 1694-1709. doi: 10.1080/10807039.2017.1422973 [15] MÜLLER G. Index of geoaccumulation in sediments of the Rhine River [J]. Geology Journal, 1969, 2: 108-118. [16] SOLGI E, ESMAILI-SARI A, RIYAHI-BAKHTIARI A, et al. Soil contamination of metals in the three industrial estates, arak, Iran [J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(4): 634-638. doi: 10.1007/s00128-012-0553-7 [17] 陈兴仁, 陈富荣, 贾十军, 等. 安徽省江淮流域土壤地球化学基准值与背景值研究 [J]. 中国地质, 2012, 39(2): 302-310. doi: 10.3969/j.issn.1000-3657.2012.02.004 CHEN X R, CHEN F R, JIA S J, et al. Soil geochemical baseline and background in Yangtze River - Huaihe River basin of Anhui Province [J]. Geology in China, 2012, 39(2): 302-310(in Chinese). doi: 10.3969/j.issn.1000-3657.2012.02.004
[18] 周敏. 上海大气PM2.5来源解析对比: 基于在线数据运用3种受体模型 [J]. 环境科学, 2020, 41(5): 1997-2005. ZHOU M. Comparison of three receptor models for source apportionment of PM2.5 in Shanghai: Using hourly resolved PM2.5 chemical composition data [J]. Environmental Science, 2020, 41(5): 1997-2005(in Chinese).
[19] 王勤, 彭渤, 方小红, 等. 湘江长沙段沉积物重金属污染特征及其评价 [J]. 环境化学, 2020, 39(4): 999-1011. doi: 10.7524/j.issn.0254-6108.2019101901 WANG Q, PENG B, FANG X H, et al. Characteristics and assessment of heavy metal contamination in sediments from Changsha section of the Xiangjiang River, Hunan Province of China [J]. Environmental Science, 2020, 39(4): 999-1011(in Chinese). doi: 10.7524/j.issn.0254-6108.2019101901
[20] 史长义, 梁萌, 冯斌. 中国水系沉积物39种元素系列背景值 [J]. 地球科学, 2016, 41(2): 234-251. SHI C Y, LIANG Y, FENG B. Average background values of 39 chemical elements in stream sediments of China [J]. Earth Science, 2016, 41(2): 234-251(in Chinese).
[21] MACDONALD D D, INGERSOLL C G, BERGER T A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems [J]. Archives of Environmental Contamination and Toxicology, 2000, 39(1): 20-31. doi: 10.1007/s002440010075 [22] 陈松, 黄淑玲, 孙林华, 等. 安徽宿州市沱河底泥中重金属元素地球化学特征 [J]. 地球与环境, 2011, 39(3): 331-337. CHEN S, HUANG S L, SUN L H, et al. Geochemical characteristics of heavy metal elements in sediments of the Tuohe river in Suzhou city, Anhui Province [J]. Earth and Environment, 2011, 39(3): 331-337(in Chinese).
[23] ZHU G, WU X, GE J, et al. Influence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map (SOM) [J]. Journal of Cleaner Production, 2020, 257: 14. [24] LI J, SHI Z M, WANG G C, LIU F, et al. Evaluating spatiotemporal variations of groundwater quality in Northeast Beijing by self-organizing map [J]. Water, 2020, 12(5): 1382. doi: 10.3390/w12051382 [25] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5: 111-126. doi: 10.1002/env.3170050203 [26] PATERSON K G, SAGADY J L, HOOPER D L, et al. Analysis of air quality data using positive matrix factorization [J]. Environmental Science & Technology, 1999, 33(4): 635-641. [27] LIN M L, GUI H R, WANG Y, et al. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China [J]. Environmental Science and Pollution Research, 2017, 24(2): 1987-1998. doi: 10.1007/s11356-016-7934-0 [28] 姜时欣, 翟付杰, 张超, 等. 伊通河(城区段)沉积物重金属形态分布特征及风险评价 [J]. 环境科学, 2020, 41(6): 2653-2663. JIANG S X, ZHAI F J, ZHANG C, et al. Speciation distribution and risk assessment of heavy metals in sediments from the Yitong river city area [J]. Environmental Science, 2020, 41(6): 2653-2663(in Chinese).
[29] FAN J Y, JIAN X, SHANG F, et al. Underestimated heavy metal pollution of the Minjiang River, SE China: Evidence from spatial and seasonal monitoring of suspended-load sediments [J]. Science of The Total Environment, 2021, 760(2021): 142586.