-
磁性固相萃取[1]作为一种新型的前处理技术,其对分析物的萃取是利用磁性或磁性修饰材料进行富集,利用外部磁场和基质样品进行分离,不需要过滤除杂,使分离更简单、更快速[2]。离子液体是近年来发展起来的一种对环境友好的绿色溶剂,由于其黏度较大,大部分溶于有机溶剂或者水,不易于与样品分离,因而将离子液体固着于金属或键合于硅胶、聚酯纤维表面作为吸附材料,用于一些有机污染物的去除和分析前处理方法中[3-4]。
石墨烯形成的磁性材料具有巨大的比表面积,强顺磁性,在分析领域受到广泛关注,在污染物分析中应用于水样中氨基甲酸酯类杀虫剂、酰胺类除草剂、烟碱类杀虫剂、三唑类杀菌剂和多环芳烃、邻苯二甲酸酯的富集[5-11]。离子液体可以通过选择不同的阴、阳离子改变其极性和性能以及对目标分析物的溶解性。因此,将离子液体和磁性石墨烯联合使用,大大地拓展了二者在分析领域的应用。Cao[12]和Zhang等[13]用离子液体和磁性石墨烯复合物作为吸附剂用于对水中硝基苯和植物油中PAH的富集,Chen等[14]用聚合离子液体磁性石墨烯QuEChERS方法萃取了蔬菜中的防腐剂,Wu和Cai等[15-16]用离子液体包被磁性氧化石墨烯萃取了生物样品中的头孢菌素和水中的氯酚类物质,Liu等[17]用化学共沉淀法合成离子液体磁性石墨烯富集水中的藻毒素,Zhang等[18]用离子液体修饰磁性石墨烯,增强了对水中As3+和As5+的去除性能。也有报道使用离子液体功能化磁性石墨烯/聚吡咯富集尿液中的甲氨蝶呤[19],用离子液体改性二硫化钼和还原石墨烯氧化物磁性纳米复合材料用于分离染料[20],离子液体和环糊精功能化的磁性石墨烯氧化物高效富集植物生长调节剂[21]。而离子液体和磁性石墨烯联合用于富集环境水中的除草剂尚鲜见报道。
综上所述,离子液体用于包被磁性氧化石墨烯大多采用极性较弱的烷基咪唑类离子液体,对于极性较强的物质富集能力较差。本文选择三嗪类、脲类极性较强常用除草剂作为研究对象,采用羟基化离子液体包被磁性氧化石墨烯作为富集材料,建立环境水中除草剂磁性固相萃取残留分析方法,为环境水中农药污染物提取和分离提供技术参考。
羟基离子液体磁性氧化石墨烯混合半胶束磁性固相萃取高效液相色谱测定环境水中的除草剂
Mixed hemimicelles magnetic solid-phase extraction based on hydroxyl ionic liquid-coated magnetic graphene oxide for the determination of herbicides in enviormental water samples coupled with high-performance liquid chromatography
-
摘要: 本文建立了羟基离子液体磁性氧化石墨烯混合半胶束磁性固相萃取高效液相色谱测定环境水中除草剂的分析方法。利用具有大的表面积和较强的吸附能力的羟基功能化离子液体1-羟己基-3-甲基咪唑溴盐(HFIL)包被磁性氧化石墨烯作为磁性固相萃取吸附材料,富集环境水的除草剂。对萃取效率的一些影响因素进行优化,如磁性氧化石墨烯与离子液体的质量比、萃取时间、解吸条件、离子强度等,从而选择最佳萃取条件。在最佳条件下,5种除草剂的平均回收率在81.2%—90.2%之间,相对标准偏差为1.9%—3.9%。浓度在10—500 μg·L−1范围内线性良好,相关系数在0.9955—0.9987之间,最小检出限为0.036—0.053 μg·L−1,并且将建立的方法应用于实际环境水样5种除草剂的测定。Abstract: In this study, a novel mixed hemimicelles magnetic solid phase extraction method based on hydroxyl ionic liquid-coated magnetic graphene oxide (Fe3O4/GO) was developed for the simultaneous extraction and determination of herbicides in enviormental water samples coupled with high-performance liquid chromatography. Fe3O4/GO after modification with 1-hydroxyl hexyl-3-methylimidazoliumbis bromide (HFIL) has high surface area and excellent adsorption capacity, which were used as magnetic solid-phase extraction (MSPE) adsorbent to enrich herbicides in environmental water samples. The factors affecting the extraction efficiency such as the ratio of the amout of Fe3O4/GO and ionic liquid, extraction time, desorption conditions and ionic strength were investigated to select the best extraction conditions. Under optimal conditions, the recoveries of five target compounds were obtained ranging from 81.2% to 90.2% and the relative standard deviations(RSDs, n=5) were 1.9%—3.9%. Linearities were achieved in the range of 10—500 μg·L−1 with correlation coefficients ranging from 0.9955 to 0.9987. The limits of detection were in the range of 0.036—0.053 μg·L−1. The method was successfully applied to the determination of the target five herbicides in the environmental water samples.
-
表 1 线性、相关系数 (R2)、回收率、LOD和LOQ
Table 1. The linearity, correlation coefficients (R2), LOD and LOQ
分析物
Analyte回归方程
Regression equation相关系数
Coefficient of determination(R2)RSD/% 平均添加回收率
Recovery/%检出限
LOD/(µg·L−1)定量限
LOQ / (µg·L−1)苯嗪草酮
Metamitrony=92.643x+27.154 0.9970 3.9 86.3 0.053 0.18 莠去津
Ataziney=87.747x+18.523 0.9987 3.2 81.2 0.042 0.14 异丙隆
Isproturony=73.468x+21.17 0.9974 1.9 86.2 0.036 0.12 敌草隆
Diurony=75.585x+21.706 0.9975 2.6 89.2 0.048 0.16 利谷隆
Linurony=36.875x+12.829 0.9955 3.4 90.2 0.051 0.17 表 2 3种实际水样中3种浓度添加回收率和RSD
Table 2. Recovery and RSD of three concentrations spicked in three real enviormental water
除草剂Herbicide 添加水平Fortified/(μg·L−1) 河水(River water) 田间水(Feild water) 地表水(Suface water) 回收率Recovery/% RSD/% 回收率Recovery/% RSD/% 回收率Recovery/% RSD/% 苯嗪草酮Metamitron 50 80.3 8.7 76.9 5.8 82.7 4.3 100 83.8 6.5 80.9 9.3 80.8 7.9 500 79.2 3.9 81.8 6.7 78.9 5.9 莠去津Atazine 50 87.6 6.6 88.6 3.0 85.5 3.7 100 80.3 7.5 84.7 4.9 82.0 5.8 500 81.8 5.0 80.0 5.5 79.4 6.2 异丙隆Isproturon 50 86.2 3.8 82.3 6.2 83.9 8.4 100 85.3 9.3 83.0 8.0 81.2 9.6 500 79.2 6.7 80.4 6.4 82.7 4.1 敌草隆Diuron 50 80.3 8.8 83.1 3.1 80.1 6.0 100 84.6 6.4 88.8 6.9 87.3 6.7 500 90.9 4.2 86.4 5.6 88.7 8.9 利谷隆Linuron 50 90.6 8.0 91.7 7.1 88.1 6.3 100 87.5 4.9 88.3 6.4 84.3 5.8 500 86.2 6.4 82.5 2.8 85.1 7.5 表 3 本方法与其它方法比较
Table 3. Comparison of the proposed method with other methods for the determination of hebicides
方法
Method样品体积
Sample volume/mL萃取时间
Extraction time /min线性范围
Linear range/(µg·L−1)回收率
Recovery /%相对标准偏差
RSD/%检出限
LOD/(µg·L−1)本方法 2 10 10—500 81.2—90.2 1.9—3.9 0.036—0.053 固相萃取(SPE)[22] 500 >60 0.05—2 70—90 5—20 0.021—0.042 固相微萃取SPME[23] 3 40 5—1000 85—113 2.4—5.9 0.5—5.1 分配分散液液微萃取(PDLLME)[24] 5 Few seconds 0.5—100 91—104 0.4—5.9 0.10—0.28 分散液液微萃取(DLLME)[25] 25 10 1—6 81—102 5—10 0.19—1.12 -
[1] CHEN L, WANG T, TONG J. Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples [J]. Trends in Analytical Chemistry, 2011, 30(7): 1095-1108. doi: 10.1016/j.trac.2011.02.013 [2] SAJID M. Magnetic ionic liquids in analytical sample preparation: A literature review [J]. TrAC Trends in Analytical Chemistry, 2019, 113: 210-223. doi: 10.1016/j.trac.2019.02.007 [3] LAWAL I A, KLINK M, NDUNGU P, et al. Brief bibliometric analysis of“ionic liquid”applications and its review as a substitute for common adsorbent modifier for the adsorption of organic pollutants [J]. Environmental Research, 2019, 175: 34-51. doi: 10.1016/j.envres.2019.05.005 [4] SZALATYTJ, KLAPISZEWSKI L, JESIONOWSKI T. Recent developments in modification of lignin using ionic liquids for the fabrication of advanced materials: A review [J]. Journal of Molecular Liquids, 2020, 3011: 112417. [5] WU Q H, ZHAO G Y, FENG C, et al. Preparation of grapheme-based magnetic nanocomposite for the extraction of carbamate pesticides from enviormental water samples [J]. Journal of Chromatography A, 2011, 1218: 7936-7942. doi: 10.1016/j.chroma.2011.09.027 [6] ZHAO G Y, SONG S J, WANG C, et al. Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent [J]. Analytica Chimica Acta, 2011, 708: 155-159. doi: 10.1016/j.aca.2011.10.006 [7] WANG W N, LI Y P, WU Q H, et al. Extraction of neonicotinoid insecticides from environmental water samples with magnetic graphene nanoparticles as adsorbent followed by determination with HPLC [J]. Analytical Methods, 2012, 4: 766-772. doi: 10.1039/c2ay05734d [8] WANG W N, MA X X, WU Q H, et al. The use of graphene-based magnetic nanoparticles as adsorbent for extraction of triazole fungicides from environmental water [J]. Journal of Sepration Science, 2012, 35: 2266-2272. doi: 10.1002/jssc.201200285 [9] WU Q H, LIU M, MA X X, et al. Extraction of phthalate esters from water and beverages using a graphene-based magnetic nanocomposite prior to their determination by HPLC [J]. Microchim Acta, 2012, 177: 23-30. doi: 10.1007/s00604-011-0752-7 [10] WANG W N, MA R Y, WU Q H, et al. Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with HPLC-fluorescence analysis [J]. Journal of Chromatography A, 2013, 1293: 20-27. doi: 10.1016/j.chroma.2013.03.071 [11] WANG W N, MA R Y, WU Q H, et al. Fabrication of magnetic microsphere-confined graphene for the preconcentration of some phthalate esters from environmental water and soybean milk samples followed by their determination by HPLC [J]. Talanta, 2013, 109: 133-140. doi: 10.1016/j.talanta.2013.02.008 [12] CAO X J, SHEN L X, YE X M, et al. Ultrasound-assisted magnetic solid-phase extraction based ionic liquid-coated Fe3O4@graphene for the determination of nitrobenzene compounds in environmental water samples [J]. Analyst, 2014, 139: 1938-1944. doi: 10.1039/c3an01937c [13] ZHANG Y, ZHOU H, ZHANG Z H, et al. Three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite for the magnetic dispersive solid phase extraction of 16 polycyclic aromatic hydrocarbons in vegetable oils [J]. Journal of Chromatography A, 2017, 1489: 29-38. doi: 10.1016/j.chroma.2017.02.010 [14] CHEN Y L, CAO S R, ZHANG L, et al. Preparation of size-controlled magnetite nanoparticles with agraphene and polymeric ionic liquid coating for the quick, easy, cheap, effective, rugged and safe extraction of preservatives from vegetables [J]. Journal of Chromatography A, 2016, 1448: 9-19. doi: 10.1016/j.chroma.2016.04.045 [15] WU J R, ZHAO H Y, XIAO D L, et al. Mixed hemimicelles solid-phase extraction of cephalosporins in biological samples with ionic liquid-coated magnetic graphene oxide nanoparticles coupled with high-performance liquid chromatographic analysis [J]. Journal of Chromatography A, 2016, 1454: 1-8. doi: 10.1016/j.chroma.2016.05.071 [16] CAI M Q, SU J, HU J Q, et al. Planar graphene oxide-based magnetic ionic liquid nanomaterial for extraction of chlorophenols from environmental water samples coupled with liquid chromatography–tandem mass spectrometry [J]. Journal of Chromatography A, 2016, 1459: 38-46. doi: 10.1016/j.chroma.2016.06.086 [17] LIU X Y, GAO S Q, LI X Y, et al. Determination of microcystins in environmental water samples with ionic liquid magnetic graphene [J]. Ecotoxicology and Environmental Safety, 2019, 176: 20-26. doi: 10.1016/j.ecoenv.2019.03.063 [18] ZHANG M Y, MA X G, LI J, et al. Enhanced removal of As(Ⅲ) and As(Ⅴ) from aqueous solution using ionic liquid-modifified magnetic graphene oxide [J]. Chemosphere, 2019, 234: 196-203. doi: 10.1016/j.chemosphere.2019.06.057 [19] HAMIDI S, AZAMI A, AGHDAM E M. A novel mixed hemimicelles dispersive micro-solid phase extraction using ionic liquid functionalized magnetic graphene oxide/polypyrrole for extraction and pre-concentration of methotrexate from urine samples followed by the spectrophotometric method [J]. Chimica Acta, 2019, 48: 179-188. [20] NI R, WANG Y Z, WEI X X, et al. Ionic liquid modified molybdenum disulfide and reduced graphene oxide magnetic nanocomposite for the magnetic separation of dye from aqueous solution [J]. Analytica Chimica Acta, 2019, 1054: 47-58. doi: 10.1016/j.aca.2018.12.037 [21] CAO S R, CHEN J Y, LAI G Y, et al. A high efficient adsorbent for plant growth regulators based on ionic liquid and β-cyclodextrin functionalized magnetic graphene oxide [J]. Talanta, 2019, 1941: 14-25. [22] CARABIAS-MARTÍNEZ R, RODRÍGUEZ-GONZALO E, HERRERO-HERNÁNDEZ E, et al. Simultaneous determination of phenyl- and sulfonylurea herbicides in water by solid-phase extraction and liquid chromatography with UV diode array or mass spectrometric detection [J]. Analytica Chimica Acta, 2004, 517: 71-79. doi: 10.1016/j.aca.2004.05.007 [23] LIN H H, SUNG Y H, HUANG S D. Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of phenylurea herbicides in aqueous samples [J]. Journal of Chromatography A, 2003, 1012: 57-66. doi: 10.1016/S0021-9673(03)01169-5 [24] CHOU T Y, LIN S L, FUH M R. Determination of phenylurea herbicides in aqueous samples using partitioned dispersive liquid–liquid microextraction [J]. Talanta, 2009, 80: 493-498. doi: 10.1016/j.talanta.2009.07.005 [25] RODRÍGUEZ-GONZÁLEZ E, BECEIRO-GONZÁLEZ E, GONZÁLEZ-CASTRO M J, et al. An environmentally friendly method for the determination of triazine herbicides in estuarine seawater samples by dispersive liquid–liquid microextraction [J]. Environmentao Science Pollution Research, 2015, 22: 618-626. doi: 10.1007/s11356-014-3383-9