-
随着工业技术的发展,人类文明的进步,环境问题日益成为人们关注的焦点[1-2]。大量的染料废水排入自然界,使得生态环境受到破坏,淡水资源逐渐减少,甚至威胁到人体生命健康[3]。半个多世纪前,研究人员发现二氧化钛(TiO2)可以在光激发条件下电解水产生氢气,此后,光催化材料被应用于多个领域,如二氧化碳还原、污染物降解等[4-6]。光催化是一种绿色、可靠并颇具研究价值的方法,可以利用太阳能净化环境[7],有望成为净化环境的有效途径之一[8-9]。然而,光催化材料存在光生电子与空穴易复合、导电性差等问题,通常通过掺杂、构造异质结或负载共催化剂等方式,提高半导体材料的光催化性能[5]。
过渡金属二硫族化合物(TMDs)由于其独特的光学、电学和机械性能而受到广泛关注[9]。其中,二硫化钼(MoS2)因其独特的层状结构和特性,而受到研究人员在催化、纳米摩擦学、电化学等领域的广泛研究[10-11]。近年来,三维二硫化钼纳米结构因其独特的性能和潜在的应用前景又一次引起了人们的广泛关注[12-13]。通过构建具有匹配能带结构的异质结,促进光生载流子的分离而提高异质结构半导体光催化材料活性[14]。迄今为止,为了提高MoS2的性能,人们已经合成了不同的MoS2基异质结材料,诸如MoS2/GaN,Fe3O4/MoS2,石墨烯/MoS2,CdS/MoS2,并表现出优异的光催化能力[10, 13, 15-16]。然而,MoS2的导电性较差,限制了其光生电子的传递。
二维(2D)过渡金属碳化物或碳氮化物(MXenes),由于其独特的性质被大量的合成和研究。Ti3C2具有优良的电子导电性和离子扩散能力,能够改善MoS2的导电性,促进电子的快速传输扩散,其丰富的表面氧化还原反应位点,还可以进一步提高污染物的降解性能[3]。研究发现,Ti3C2在水热反应条件下会被部分氧化生成TiO2。为方便表达,将反应后材料命名为p-Ti3C2,即复合产物为p-Ti3C2/MoS2纳米花[17]。
本研究通过添加Ti3C2提高半导体光催化材料的电子传递速率,构建p-Ti3C2/MoS2异质结复合催化材料促进电子与空穴对分离效率,首先,利用蚀刻法制备Ti3C2纳米片,其次,采用水热合成法将MoS2生长于Ti3C2纳米片上,形成被部分氧化的p-Ti3C2/MoS2异质结复合催化材料。并探究二者复合比例、光照条件以及废水pH等因素对污染物降解性能的影响。
p-Ti3C2/MoS2制备与罗丹明B降解性能
p-Ti3C2/MoS2 synthesis and the degradation performance of rhodamine B
-
摘要:
为降低半导体光催化材料电子与空穴的复合率,增加材料导电性,提高MoS2的催化性能,本研究通过水热合成方法制备p-Ti3C2/MoS2异质结复合材料,通过添加Ti3C2提高电子传递速率,p-Ti3C2/MoS2异质结促进电子与空穴对分离,从而提高材料催化性能。此外,通过对比p-Ti3C2负载量、光照条件以及pH值,探究p-Ti3C2/MoS2材料罗丹明B(RhB)的降解性能。研究结果表明,在可见光条件下,p-Ti3C2质量分数为10%的复合材料(TM-10)对RhB的去除效果最佳,其对RhB的降解速率常数是MoS2的5.91倍,该材料降解RhB的最适pH值为5。通过加入不同捕获剂发现羟基自由基为降解污染物的主要活性物质,并推断出p-Ti3C2/MoS2异质结复合材料降解污染物的机理。
Abstract:In order to reduce the composite rate of electrons and holes in semiconductor photocatalytic materials, increase the conductivity of materials, and improve the catalytic performance of MoS2, this study prepared p-Ti3C2/MoS2 heterojunction composite materials by hydrothermal synthesis method. By adding Ti3C2, the electron transfer rate was improved. And the p-Ti3C2/MoS2 heterojunction promoted the separation of electrons and holes. It improved the catalytic performance of materials. In addition, the degradation performance of rhodamine B (RhB) by p-Ti3C2/MoS2 was investigated by comparing p-Ti3C2 loading capacity, light conditions and pH. The results showed that the composite material with 10% p-Ti3C2 (TM-10) had the best removal effect on RhB under the visible light condition. And its removal rate constant of RhB was 5.91 times of MoS2, and the optimum pH for the degradation of RhB was 5. The hydroxyl radical was found to be the main active substance for the degradation of pollutants by adding different capture agents, and the mechanism of the degradation of pollutants by MoS2/Ti3C2/TiO2 heterojunction composite was discussed.
-
Key words:
- MoS2 /
- Ti3C2 /
- photocatalysis /
- composite materials /
- heterojunction
-
图 8 (a) 不同光照条件下p-Ti3C2/MoS2复合催化剂降解RhB动力学拟合图;(c) MoS2、TM-5、TM-10和TM-20光催化剂降解RhB动力学拟合图;(e) 不同pH下TM-10复合催化剂降解RhB动力学拟合图;(b)、(d)和(f)分别为(a)、(c)和(e)的动力学速率常数柱状图
Figure 8. (a) Kinetics map of degradation of RhB by p-Ti3C2/MoS2 composite catalyst in different irradiations; (c) Kinetics map of degradation of RhB by MoS2, TM-5, TM-10 and TM-20; (e) Kinetics map of degradation of RhB by TM-10 composite catalyst in different pH conditions; (b), (d) and (f) are the reaction rate constants of (a), (c) and (e) respectively
-
[1] GUO J, LIU Y, HAO Y, LI Y, et al. Comparison of importance between separation efficiency and valence band position: The case of heterostructured Bi3O4Br/α-Bi2O3 photocatalysts [J]. Applied Catalysis B: Environmental, 2018, 224: 841-853. doi: 10.1016/j.apcatb.2017.11.046 [2] NASERI A, SAMADI M, POURJAVADI A, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions [J]. Journal of Materials Chemistry A, 2017, 5: 23406-23433. doi: 10.1039/C7TA05131J [3] GAO Y, WANG L, ZHOU A, et al. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity [J]. Materials Letters, 2015, 150: 62-64. doi: 10.1016/j.matlet.2015.02.135 [4] ZHOU W, YIN Z, DU Y, et al. Synthesis of few-layer MoS2 Nanosheet-Coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities [J]. Small, 2013, 9: 140-147. doi: 10.1002/smll.201201161 [5] WU J M, CHANG W E, CHANG Y T, et al. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers [J]. Adv Mater, 2016, 28: 3718-3725. doi: 10.1002/adma.201505785 [6] SAHARA G, KUMAGAI H, MAEDA K, et al. Photoelectrochemical Reduction of CO2 coupled to water oxidation using a photocathode with a Ru(Ⅱ)-Re(Ⅰ) complex photocatalyst and a CoOx/TaON photoanode [J]. J Am Chem Soc, 2016, 138: 14152-14158. doi: 10.1021/jacs.6b09212 [7] MAO X, XIE F, LI M. Facile hydrolysis synthesis of novel Bi4O5Br2 photocatalyst with enhanced visible light photocatalytic activity for the degradation of resorcinol [J]. Materials Letters, 2016, 166: 296-299. doi: 10.1016/j.matlet.2015.12.090 [8] PENG C, YANG X, LI Y, et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity [J]. ACS Appl Mater Interfaces, 2016, 8: 6051-6060. doi: 10.1021/acsami.5b11973 [9] REHMAN A, KHAN M F, SHEHZAD M A, et al. n-MoS2/p-Si solar cells with al2o3 passivation for enhanced photogeneration [J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29383-29390. [10] TIWARI A P, YOO H, LEE J, et al. Prevention of sulfur diffusion using MoS2-intercalated 3D-nanostructured graphite for high-performance lithium-ion batteries [J]. Nanoscale, 2015, 7: 11928-11933. doi: 10.1039/C5NR03111G [11] WANG Z, CHEN Q, WANG J. Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2 [J]. The Journal of Physical Chemistry C, 2015, 119: 4752-4758. doi: 10.1021/jp507751p [12] ZHANG X, HUANG X, XUE M, et al. Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres [J]. Materials Letters, 2015, 148: 67-70. doi: 10.1016/j.matlet.2015.02.027 [13] LIN T, WANG J, GUO L, et al. Fe3O4@MoS2 core–shell composites: preparation, characterization, and catalytic application [J]. The Journal of Physical Chemistry C, 2015, 119: 13658-13664. doi: 10.1021/acs.jpcc.5b02516 [14] LIU D, YAO W, WANG J, et al. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/Bi2SiO5 photocatalyst [J]. Applied Catalysis B: Environmental, 2015, 172-173: 100-107. doi: 10.1016/j.apcatb.2015.01.037 [15] ZHANG H, ZHANG Y N, LIU H, et al. Novel heterostructures by stacking layered molybdenum disulfides and nitrides for solar energy conversion [J]. J. Mater. Chem. A, 2014, 2: 15389-15395. doi: 10.1039/C4TA03134B [16] ZHENG W, FENG W, ZHANG X, et al. Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures [J]. Advanced Functional Materials, 2016, 26(16): 2648-2654. [17] ZHENG M, GUO R, LIU Z, et al. MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries [J]. Journal of Alloys and Compounds, 2018, 735: 1262-1270. doi: 10.1016/j.jallcom.2017.11.250 [18] WU J, CHANG W, CHANG Y, et al. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers [J]. Advanced Materials, 2016, 28(19): 3718-3725. [19] CAI T, WANG L, LIU Y, et al. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance[J]. Applied Catalysis B: Environmental, 2018, 239: 545-554. [20] RUSSO M, PAROLA L V, TESTA M L, et al. Structural insight in TiO2 supported CoFe catalysts for Fischer–Tropsch synthesis at ambient pressure [J]. Applied Catalysis A: General 2020, 1176: 21. [21] RABÉ K, LIU L, NAHYOON N A, et al. Enhanced Rhodamine B and coking wastewater degradation and simultaneous electricity generation via anodic g-C3N4/Fe0(1%)/TiO2 and cathodic WO3 in photocatalytic fuel cell system under visible light irradiation [J]. Electrochimica Acta, 2019, 298: 430-439. doi: 10.1016/j.electacta.2018.12.121 [22] PAUL K K, SREEKANTH N, BIROJU R K, et al. Solar light driven photoelectrocatalytic hydrogen evolution and dye degradation by metal-free few-layer MoS2 nanoflower/TiO2(B) nanobelts heterostructure [J]. Solar Energy Materials and Solar Cells, 2018, 185: 364-374. doi: 10.1016/j.solmat.2018.05.056