-
药物和个人护理用品(pharmaceuticals and personal care products, PPCPs),是由Daughton等于1999年首次提出概念的一类新型污染物[1]。近年来,PPCPs化合物在水体环境、沉积物、土壤污染检测等领域的相关研究备受关注,成为新型污染物方向的研究热点[2-4]。国内外多处水体均有不同程度的PPCPs检出报道,例如美国密苏里州、英国塔夫河和伊利河、法国塞纳河、意大利波河流域等水体,有报道咖啡因、磺胺甲恶唑、布洛芬、甲氧苄啶、卡马西平等多种药物被检出[5-8],我国的长江中下游、珠江、太湖等地也有20种以上药物在地表水及沉积物相中检出[9-11]。
虽然PPCPs在自然界的检出浓度多为ng·L−1—μg·L−1数量级,但该类物质普遍具有较强的生物活性,部分PPCPs具有持久性和生物累积性,对水生生物的生长发育及繁殖有显著影响。例如土霉素会干扰等鞭金藻的叶绿素合成,抑制光合作用,从而影响等鞭金藻的生长代谢[12],而布洛芬、萘普生、磺胺甲基异恶唑、咖啡因等常见药物可以干扰细胞色素酶P450的活性,进而使虹鳟鱼肝细胞的代谢规律受到干扰,对虹鳟鱼产生肝损伤[13]。麝香酮对斑马鱼的胚胎存活率、平均存活时间有不利影响,对斑马鱼生殖能力产生损害[14].
天津市处于华北平原东北位置,属海河流域,东临渤海湾,是京津冀经济圈的重要组成部分,近年来随着滨海新区的开发,经济发展速度迅猛。但由于工业发展,海河流域在全国水污染防治考核中处于较差水平,多处河段常年处于劣五类水体,水污染问题十分严重[15]。工业区、农业区和城市区的密集和混杂,使得本地处于PPCPs化合物污染的风险之中。本研究以天津市水体为研究对象,分析天津市PPCPs化合物污染状况,为天津市水体污染物控制目标提供建议。
天津市地表水体54种PPCPs分布特征
Distribution characteristics of 54 kinds of PPCPs in surface water in Tianjin
-
摘要: 本研究采用高效液相色谱串联三重四极杆质谱仪器对天津市范围内44个点位的地表水体中54种PPCPs化合物进行了分析,并对PPCPs在天津市范围内的分布特征进行了研究。结果表明,18种PPCPs在天津市范围内被检出,浓度范围为0—9574.27 ng·L−1;8种喹诺酮类抗生素均有检出,检出率在43.18%—100%之间;大环内酯类抗生素红霉素,检出浓度偏高,主要在天津市医疗集中区域;双酚A检出率为93.18%,检出浓度最高为9574.27 ng·L−1,高浓度区域集中在天津市工业区;在天津水体入境点处检测到避蚊胺,说明来自北京、河北等地的水体受到生活污水污染。对检出的PPCPs化合物中16种物质进行风险评估,结果表明诺氟沙星、氧氟沙星、红霉素、克拉霉素和双酚A等5种药品在部分位点的RQ值大于1,存在生态风险。Abstract: In this study, 54 pharmaceuticals and personal care products (PPCPs) in surface water at 44 sites in Tianjin were analyzed by high performance liquid chromatography tandem triple quadrupole mass spectrometry (HPLC-MS/MS), and the distribution characteristics of the PPCPs were studied in Tianjin. The results showed that 18 of the PPCPs in Tianjin were in the range of 0—9574.27 ng·L−1. All 8 quinolones were found at the rate between 43.18% and 100%. Erythromycin, a macrolide antibiotic, was of high concentrations, mainly in the medical concentrated areas. The detection rate of bisphenol A was 93.18%, and the highest detected concentration was 9574.27 ng·L−1, and the high concentration area was concentrated the industrial zone. DEET was detected at the water entry point in Tianjin, indicating that the water from Beijing, Hebei and other places was contaminated with domestic sewage. Risk assessment was carried out for 16 PPCPs compounds detected. The results showed that the RQ values of norfloxacin, ofloxacin, erythromycin, clarithromycin and bisphenol A at some sites were greater than 1, suggesting ecological risks.
-
表 1 PPCPs信息
Table 1. The information of PPCPs
化合物 Compounds 英文名 English name CAS号 CAS number 分子式 Molecular formula 磺胺类 磺胺甲恶唑 Sulfamethoxazole 723-46-6 C10H11N3O3S 磺胺嘧啶 Sulfadiazine 68-35-9 C10H10N4O2S 磺胺吡啶 Sulfapyridine 144-83-2 C11H11N3O2S 磺胺噻唑 Sulfathiazole 72-14-0 C9H9N3O2S2 磺胺喹恶啉 Sulfaquinoxaline 59-40-5 C14H12N4O2S 甲氧苄啶 Trimethoprim 738-70-5 C14H18N4O3 喹诺酮类 诺氟沙星 Norfloxacin 70458-96-7 C16H18FN3O3 氧氟沙星 Ofloxacin 82419-36-1 C18H20FN3O4 环丙沙星 Ciprofloxacin 85721-33-1 C17H18FN3O3 依诺沙星 Enoxacin 74011-58-8 C15H17FN4O3 诺美沙星 Lomefloxacin 98079-51-7 C17H19F2N3O3 恶喹酸 Oxolinic acid 14698-29-4 C13H11NO5 萘啶酸 Nalidixic acid 389-08-2 C12H12N2O3 恩诺沙星 Enrofloxacin 93106-60-6 C19H22FN3O3 四环素类 四环素 Tetracycline 60-54-8 C22H24N2O8 土霉素 Oxytetracycline 79-57-2 C22H24N2O9 金霉素 Chlorotetracycline 57-62-5 C22H23ClN2O8 大环内酯类 阿奇霉素 Azithromycin 83905-01-5 C38H72N2O12 大环内酯类 红霉素 Erythromycin 114-07-8 C37H67NO13 克拉霉素 Clarithromycin 81103-11-9 C38H69NO13 罗红霉素 Roxithromycin 80214-83-1 C41H76N2O15 竹桃霉素 Oleandomycin phosphate 7060-74-4 C35H64NO16P 克林霉素 Clindamycin 18323-44-9 C18H33ClN2O5S 其他抗生素 甲硝唑 Metronidazole 443-48-1 C6H9N3O3 激素 地塞米松 Dexamethasone 0050-2-2 C22H29FO5 氟米松 Flumethasone 2135-17-3 C22H28F2O5 雄烯二酮 Androstenedione 0063-05-8 C19H26O2 己烯雌酚 Diethylstilbestrol 56-53-1 C18H20O2 消炎止痛药 萘普生 Naproxen 22204-53-1 C14H14O3 双氯芬酸 Diciofenac 15307-86-5 C14H9Cl2NO 布洛芬 Ibuprofen 15687-27-1 C13H18O2 吲哚美辛 Indometacin 53-86-1 C19H16ClNO4 酮基布洛芬 Ketoprofen 22071-15-4 C16H14O3 安替比林 Antipyrine 60-80-0 C11H12N2O 非那西丁 Phenacetin 62-44-2 C10H13NO2 氟康唑 Fluconazole 86386-73-4 C13H12F2N6O 降压药 缬沙坦 Valsartan 137862-53-4 C24H29N5O3 氢氯噻嗪 Hydrochlorothiazide 58-93-5 C7H8ClN3O4S2 降血脂药 氯贝酸 Clofibric acid 882-09-7 C10H11ClO3 苯扎贝特 Bezafibrate 41859-67-0 C19H20ClNO4 吉非罗齐 Gemfibrozil 25812-30-0 C15H22O3 抗精神病药 可铁宁 COTININE 486-56-6 C10H12N2O 卡马西平 Carbamazepine 298-46-4 C15H12N2O 阿咪舒必利 Amisulpride 71675-85-9 C17H27N3O4S 抗组胺剂 苯海拉明 Diphenhydramine 58-73-1 C17H21NO 抗溃疡药 利多卡因 Lidocaine 137-58-6 C14H22N2O 西咪替丁 Cimetidine 51481-61-9 C10H16N6S 血清素再吸收抑制剂 文拉法辛 Venlafaxine 93413-69-5 C17H27NO2 Β-受体阻断药 阿替洛尔 Atenolol 29122-68-7 C14H22N2O3 美托洛尔 Metoprolol 37350-58-6 C15H25NO3 索他洛尔 Sotalol 3930-20-9 C12H20N2O3S 消毒杀菌剂 三氯卡班 Triclocarban 101-20-2 C13H9Cl3N2O 驱虫剂 避蚊胺 DEET 134-62-3 C12H17NO 塑料添加剂 双酚A Bisphenol A 80-05-7 C15H16O2 表 2 方法1的高效液相色谱洗脱程序
Table 2. High performance liquid chromatography elution procedure of Method 1
时间/min
TimeA流动相/%
A mobile phaseB流动相/%
B mobile phase0.0 10 90 0.5 10 90 3.5 30 70 4.5 40 60 7.5 90 10 8.5 100 0 8.6 10 90 10.0 10 90 表 3 方法2和方法3的高效液相色谱洗脱程序
Table 3. High performance liquid chromatography elution procedure of Method 2 and 3
时间/min
TimeA流动相/%
A mobile phaseB流动相/%
B mobile phase0.0 30 70 0.5 30 70 4.5 80 20 5.0 100 0 5.1 30 70 9 30 70 表 4 天津地表水样中PPCPs浓度及检出率
Table 4. The concentrations and detection frequencies of individual PPCPs in water samples of Tianjin
化合物
Compounds检出率/%
The detection rate浓度范围/(ng·L−1)
Concentration range喹诺酮类 诺氟沙星 45.45 0—141.61 氧氟沙星 43.18 0—73.45 环丙沙星 59.09 0—152.42 依诺沙星 52.27 0—303.61 诺美沙星 63.64 0—10.42 恶喹酸 100.00 80.22—140.86 萘啶酸 86.36 0—13.86 恩诺沙星 54.55 0—31.83 四环素类 四环素 63.64 0—9.74 土霉素 54.55 0—34.50 金霉素 4.55 0—3.47 大环内酯类 红霉素 2.27 0—722.04 克拉霉素 95.45 0—20.57 罗红霉素 100.00 10.11—30.06 竹桃霉素 56.82 0—6.16 降血脂药 吉非罗齐 50.00 0—78.31 个人护理品 避蚊胺 38.64 0—173.76 双酚A 93.18 0—9574.27 表 5 独流减河新增点位PPCPs化合物检出情况(ng·L−1)
Table 5. The detected concentartions of PPCPs at the additional sites in Duliujianhe River(ng·L−1)
化合物
Compounds良王庄村
Liangwangzhuang
village西琉城大桥
Xiliuyu bridge津文线杨成庄大桥
Jinwenxianyangchengzhuang
bridge马厂减河闸
Machangjianhe
sluice独流减河大桥
Duliujianhe
bridge喹诺酮类 诺氟沙星 145.60 NF NF NF 145.33 氧氟沙星 NF NF 69.84 NF 69.61 环丙沙星 149.29 148.56 NF NF 150.51 依诺沙星 NF 142.84 NF NF 143.15 诺美沙星 8.56 7.62 10.77 10.91 7.89 恶喹酸 87.51 107.37 108.33 96.79 86.03 萘啶酸 1.76 1.53 0.01 2.47 NF 恩诺沙星 31.62 31.54 NF 31.14 NF 四环素类 四环素 NF 6.89 NF NF 8.05 土霉素 NF NF NF NF NF 金霉素 NF NF NF NF NF 大环内酯类 红霉素 NF NF NF NF NF 克拉霉素 12.95 14.12 17.75 18.19 NF 罗红霉素 10.15 14.02 17.01 19.46 10.12 竹桃霉素 5.52 NF 5.39 5.55 NF 降血脂药 吉非罗齐 NF 55.23 33.93 34.57 74.17 个人护理品 避蚊胺 24.43 35.67 163.11 NF NF 双酚A 146.39 196.16 120.83 91.88 115.50 *NF:未发现,该物质未检出或低于定量限.
*NF:Not found. The substance has not been detected or is below the limit of quantity.表 6 入境点位PPCPs化合物检出情况(ng·L−1)
Table 6. The detected concentartions of PPCPs at the entry sites(ng·L−1)
化合物
Compounds小河闸
Xiaohe sluice台头
Taitou九宣闸
Jiuxuan sluice土门楼
Tumenlou罗古判水文站
Luogupan hydrological
station喹诺酮类 诺氟沙星 NF* NF 145.24 NF NF 氧氟沙星 69.97 72.88 NF NF 69.79 环丙沙星 137.19 NF 150.04 NF 149.63 依诺沙星 147.27 144.36 NF 145.49 NF 诺美沙星 7.87 9.25 9.30 7.91 7.80 恶喹酸 80.22 84.39 90.54 140.86 89.30 萘啶酸 NF 3.41 0.89 5.61 2.27 恩诺沙星 NF 31.83 31.12 31.28 31.67 四环素类 四环素 7.23 NF NF NF 8.42 土霉素 10.24 NF 11.05 NF 32.37 金霉素 NF NF NF NF 2.38 大环内酯类 红霉素 NF NF NF NF NF 克拉霉素 NF 13.48 12.81 20.57 13.31 罗红霉素 10.11 12.02 10.43 23.18 10.48 竹桃霉素 5.29 5.49 6.16 5.55 NF 降血脂药 吉非罗齐 29.91 NF 55.91 NF NF 个人护理品 避蚊胺 NF NF NF 173.75 NF 双酚A NF 83.30 94.43 391.86 125.59 *NF:未发现,该物质未检出或低于定量限.
*NF:Not found. The substance has not been detected or is below the limit of quantity.表 7 16种PPCPs毒性数据,PNEC值及RQ最大值
Table 7. Toxicity data of 16 kinds of PPCPs, PNEC value and RQ maximum
化合物Compounds 物种名Species name L(E)C50/(mg·L−1) PNEC/(ng·L−1) RQMAX 来源Sources 喹诺酮类 诺氟沙星 Microcystis wesenbergii 0.038 38 3.89 [26] 氧氟沙星 Microcystis aeruginosa 0.021 21 3.50 [27] 环丙沙星 Lemna gibba 0.697 697 0.22 [28] 诺美沙星 Lemna gibba 0.097 97 0.11 [28] 恶喹酸 Microcystis aeruginosa 0.18 180 0.78 [29] 萘啶酸 Dugesia japonica 100 106 0.13 [30] 恩诺沙星 Microcystis aeruginosa 0.049 49 0.65 [27] 四环素类 四环素 Microcystis aeruginosa 0.09 90 0.11 [31] 土霉素 Pseudokirchneriella subcapitata 0.17 170 0.20 [20] 金霉素 Lemna gibba 0.219 219 0.02 [28] 大环内酯类 红霉素 Anabaena sp. 0.022 22 32.82 [32] 克拉霉素 Pseudokirchneriella subcapitata 0.002 2 10.28 [20] 罗红霉素 Lemna gibba 1 1000 0.03 [28] 降血脂药 吉非罗齐 Ceriodaphnia dubia 0.53 530 0.15 [33] 个人护理品 避蚊胺 Daphnia magna 1 1000 0.17 [34] 双酚A Dugesia japonica 1.25 1250 7.66 [35] -
[1] DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change [J]. Environmental Health Perspectives, 1999, 107(6): 907-938. [2] 于畅, 李剑, 王金生, 等. 地下水中药物及个人护理品类污染研究进展 [J]. 环境污染与防治, 2017, 39(1): 111-114. YU C, LI J, WANG J S, et al. Advances in research on groundwater contamination by drugs and personal care products [J]. Environmental Pollution & Control, 2017, 39(1): 111-114(in Chinese).
[3] 高月, 李杰, 许楠, 等. 汉江水相和沉积物中药品和个人护理品(PPCPs)的污染水平与生态风险 [J]. 环境化学, 2018, 37(8): 1706-1719. doi: 10.7524/j.issn.0254-6108.2018022604 GAO Y, LI J, XU N, et al. Pollution levels and ecological risks of PPCPs in water and sediment samples of Hanjiang River [J]. Environmental Chemistry, 2018, 37(8): 1706-1719(in Chinese). doi: 10.7524/j.issn.0254-6108.2018022604
[4] YU Y, LIU Y, WU L S. Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils. [J]. Environmental Science and Pollution Research International, 2013, 20(6): 4261-4267. doi: 10.1007/s11356-012-1442-7 [5] 杨程. 城市水系統中PPCPs分布及污水处理优化研究[D]. 重庆: 重庆大学, 2014. YANG C, Investigation of PPCPs in civil water cyclesystem and study on optimization of wastewater treatment on PPCPs[D]. Chongqing: Chongqing University, 2014 (in Chinese).
[6] TAMTAM F, MERCIER F, LE B B, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. [J]. The Science of the Total Environment, 2008, 393(1): 84-95. doi: 10.1016/j.scitotenv.2007.12.009 [7] KASPRZYK-HORDERN B, DINSDALE R M, GUWY A J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters [J]. Water Research, 2009, 43(2): 2076. [8] VERLICCHI P, AUKIDY M A, JELIC A, et al. Comparison of measured and predicted concentrations of selected pharmaceuticals in waste water and surface water: A case study of a catchment area in the Po Valley (Italy) [J]. Science of the Total Environment, 2013(470-471): 844-854. [9] WU C, HUANG X, WITTER J D, et al. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China [J]. Ecotoxicology & Environmental Safety, 2014, 106: 19-26. [10] LIANG X, CHEN B, NIE X, et al. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China [J]. Chemosphere, 2013, 11: 1410-1416. [11] XU J, ZHANG Y, ZHOU C, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China [J]. Science of the Total Environment, 2014, 497-498: 267-273. doi: 10.1016/j.scitotenv.2014.07.114 [12] 赵素芬, 曹日波. 土霉素、氯霉素对湛江等鞭金藻细胞增殖和光合色素含量的影响 [J]. 湛江海洋大学学报, 2004, 3: 19-23. ZHAO S F, CAO R B. Effects of terramycin and ramphenicol on the growth of isochrysis Zhanjian gensis [J]. Journal of Zhanjiang Ocean University, 2004, 3: 19-23(in Chinese).
[13] GAGNE F, BLAISE C, ANDRE C. Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes [J]. Ecotoxicology and Environmental Safety, 2006, 64(3): 329-336. doi: 10.1016/j.ecoenv.2005.04.004 [14] CARLSSON G, ORN S, ANDERSSON P L, et al. The impact of musk ketone on reproduction in zebrafish (Danio rerio) [J]. Marine Environmental Research, 2000, 50(1-5): 237-241. doi: 10.1016/S0141-1136(00)00075-1 [15] 尹音. 天津城市河流水环境评估与调控研究[D]. 天津: 天津大学, 2014. YIN Y, Evaluation and regulation of river water environment in Tianjin urban area[D]. Tianjin: Tianjin University, 2014 (in Chinese).
[16] 张盼伟. 海河流域典型水体中PPCPs的环境行为及潜在风险研究[D]. 北京: 中国水利水电科学研究院, 2018. ZHANG P W. Environmental behavior and pollution characteristics of pharmaceuticals and personal care products, and their associated environmental risks in typical water-body from Haihe river basin, China[D] Beijing: China Institute of Water Resources and Hydripower Research, 2018 (in Chinese).
[17] 和思楠. 松花江吉林省段典型新兴污染物的分布、风险、通量及来源[D]. 吉林: 吉林大学, 2019. HE S N. Distribution, ecological risk, flux and source of typical emerging contaminants in the Jilin Songhua river[D]. Jilin: Jilin University, 2019 (in Chinese).
[18] 朴海涛. 京杭运河及沿岸区域地表水中药物及个人护理品污染地理分布特征及来源辨析[D]. 北京: 中国地质科学院, 2017. PIAO H T. Distribution and source analysis of pharmaceutical and personal care products in the grand canal and related areas[D]. Beijing: Chinese Academy of Geological Sciences, 2017 (in Chinese).
[19] PENG X Z, ZHANG K, TANG C M, et al. Distribution pattern, behavior, and fate of antibacterials in urban aquatic environments in South China [J]. Environ Monit, 2011, 13: 446-454. doi: 10.1039/C0EM00394H [20] ISIDORI M, LAVORGNA M, NARDELLI A, et al. Toxic and genotoxic evaluation of six antibiotics on non-target organisms [J]. Science of the Total Environment, 2005, 346(1/3): 87-98. [21] 余中宾. 无蹼壁虎雌激素受体α mRNA的分子克隆和组织分布[D]. 安徽: 安徽师范大学, 2007. YU Z B. Molecular cloning of mRNA and tissue distribution of estrogen receptor alpha in lizard (Gekko Swinhonis)[D]. Anhui: Anhui Normal University, 2007 (in Chinese).
[22] 刘红玲, 刘晓华, 王晓祎, 等. 双酚A和四溴双酚A对大型溞和斑马鱼的毒性 [J]. 环境科学, 2007, 8: 1784-1787. doi: 10.3321/j.issn:0250-3301.2007.08.024 LIU H L, LIU X H, WANG X W, et al. Toxicity of BPA and TBBPA to Daphnia magna and Zebrafish Brachydanio rerio [J]. Environmental Science, 2007, 8: 1784-1787(in Chinese). doi: 10.3321/j.issn:0250-3301.2007.08.024
[23] 陈笑梅, 施旭霞. 未衍生高效液相色谱法测定烤鳗和活鳗中噁喹酸的残留量 [J]. 色谱, 2002, 20(5): 462-463. doi: 10.3321/j.issn:1000-8713.2002.05.021 CHEN X M, SHI X X. Determination of oxolinic acid residues in baked and fresh eels by high performance liquid chromatography without derivatization [J]. Chinese Journal of Chromatography, 2002, 20(5): 462-463(in Chinese). doi: 10.3321/j.issn:1000-8713.2002.05.021
[24] 郭江. 天津市河湖生态需水量及配置方案研究[D]. 天津: 天津大学, 2018. GUO J. Study on ecological water requirement and allocation scheme of rivers and lakes in Tianjin[D]. Tianjin: Tianjin University, 2018 (in Chinese).
[25] 柳王荣. 典型杀生剂在污水处理厂与受纳水环境中的分布、归趋及生态风险研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2016. LIU W R. Occurrence, fate and ecological risk of biocides in the wastewater treatment plants and receiving aquatic environment[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2016 (in Chinese).
[26] ANDO T, NAGASE H, EGUCHI K, HIROOKA A. Novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents [J]. Environmental Toxicology and Chemistry, 2007, 26: 601-606. doi: 10.1897/06-195R.1 [27] ROBINSON A A, BELDON J B, LYDY M J. Toxicity of fluoroquinolone antibiotics to aquatic organisms [J]. Environmental Toxicology & Chemistry, 2005, 24(2): 423-430. [28] BRAIN R A, JOHNSON D J, RICHARDS S M, et al. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven‐day static‐renewal test [J]. Environmental Toxicology and Chemistry, 2004, 23: 371-382. doi: 10.1897/02-576 [29] LÜTZHØFT H C H, HALLING-SØRENSEN B, JØRGENSEN S E. Algal toxicity of antibacterial agents applied in Danish fish farming [J]. Archives of Environmental Contamination and Toxicology, 1999, 36(1): 1-6. doi: 10.1007/s002449900435 [30] DE OLIVEIRA L L D, ANTUNES S C, GONÇALVES F, et al. Acute and chronic ecotoxicological effects of four pharmaceuticals drugs on cladoceran Daphnia magna [J]. Drug and Chemical Toxicology, 2016, 39(1): 13-21. doi: 10.3109/01480545.2015.1029048 [31] HALLING-SØRENSEN B. Algal toxicity of antibacterial agents used in intensive farming [J]. Chemosphere, 2000, 40(7): 731-739. doi: 10.1016/S0045-6535(99)00445-2 [32] GONZÁLEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment [J]. Water Research, 2013, 47(6): 2050-2064. doi: 10.1016/j.watres.2013.01.020 [33] ISIDORI M, NARDELLI A, PASCARELLA L, et al. Toxic and genotoxic impact of fibrates and their photoproducts on non-target organisms [J]. Environment International, 2007, 33(5): 635-641. doi: 10.1016/j.envint.2007.01.006 [34] OLMSTEAD A W, LEBLANC G A. Toxicity assessment of environmentally relevant pollutant mixtures using a heuristic model [J]. Integrated Environmental Assessment and Management: An International Journal, 2005, 1(2): 114-122. doi: 10.1897/IEAM_2004-005R.1 [35] LI M H. Effects of bisphenol A, two synthetic and a natural estrogens on head regeneration of the freshwater planarians, Dugesia japonica [J]. Toxicological & Environmental Chemistry, 2014, 96(8): 1174-1184.