-
碳、氮、磷等营养元素是生物系统中最重要的基础生命元素,是构成生态系统初级生产力和物质循环的重要载体[1]。水域生态系统中氮、磷营养盐的分布、变化特征对水生生物的生长、群落演替等有决定性作用[2]。水生态系统中的氮、磷营养盐变化是由生物和非生物因素共同作用影响[3]。网箱养殖是一种集约化、高密度的投饵型养殖方式[4]。鱼类养殖过程中投饵、吸收、排泄和同化,浮游生物和水生植物的吸收和利用以及细菌等微生物的分解等是养殖水域生态系统中氮、磷等营养元素物质循环和能量流动的主要方式[5-6]。因此了解网箱养殖过程中的氮、磷营养元素的分布形式、变化规律等时空演替特征对新时代环保压力下水产养殖业的健康可持续发展有重要指导意义。
柘林水库位于长江中游鄱阳湖流域,是江西省最大的人工湖,通过人工拦截鄱阳湖五大支流之一“修河”形成。流域内有大小支流600余条,坝址以上汇水区域面积9340 m2,湖区水域面积308 km2,总库容79.2×108 m3。柘林水库太阳山库湾位于九江市永修县三溪桥镇黄岭村(E: 115°28′—115°31′, N:29°16′—29°18′),库湾水域总面积约265.33 hm2。目前库湾内有网箱3.1×103个,规格为5 m×5 m,网箱养殖总面积约为7.96 hm2,主要养殖对象有加州鲈(Micropterus salmoides)、长吻鮠(Leiocassis longirostris)、匙吻鲟(Polyodon spathula)、大鳞鲃(Luciobarbus capito)等特色淡水鱼,2018—2019年成鱼年产量在9.0×104—1.1×104 kg。
本研究通过监测养殖期间太阳山库湾水体中的水质理化因子含量变化,分析了网箱养殖对其水环境的影响,并以单因子、综合营养状态指数法和潜在性营养法对水环境质量进行健康评价,重点分析和探讨了网箱养殖对氮、磷营养盐的时空变化的影响,为养殖水域污染物控制和新型生态网箱系统研发等技术提供科学依据。
网箱养殖对柘林水库氮磷营养盐时空分布的影响-以太阳山库湾为例
Influence of cage fish-farming on tempo-spatial distribution of nitrogrn and phosphorus in Zhelin Reservior: A case study of Taiyangshan Bay
-
摘要: 为探究网箱养殖对柘林水库氮磷营养盐时空分布的影响,以太阳山库湾为例,于2018年10月—2019年7月分别对网箱养殖区、近岸区和对照区的水温(WT)、溶解氧(DO)、电导率(conductivity)、无机氮(DIN)、磷酸盐(
${{\rm{PO}}_4^{3-} }$ -P)等指标监测分析,并对水体的富营养状态进行综合评价。结果显示,太阳山库湾的WT、DO、pH和电导率呈明显季节变化,WT夏季最高,DO春季最高,Conductivity秋季最高,pH春夏高于秋冬,但养殖区与近岸区和对照区无显著差异(P > 0.05)。近岸区和养殖区的DIN显著高于对照区(P < 0.05),除秋季养殖区与对照区显著高于近岸区外(P < 0.05),其他季节养殖区、近岸区和对照区${{\rm{PO}}_4^{3-}} $ -P含量无显著异(P > 0.05)。不同形态的DIN的比例有明显的差异,硝酸盐氮(${{\rm{NO}}_3^{-}} $ -N)占比最大(93.35%),其次为氨氮(${{\rm{NH}}_4^{+}} $ -N)(6.00%),亚硝酸盐氮(${{\rm{NO}}_2^{-}} $ -N)占比最小(0.65%),说明太阳山库湾的氮营养盐达到了热力学平衡状态。太阳山库湾除夏季近岸区为轻度富营养状态外,整体呈中营养状态,表明相较于生活污水无序排放、不规范农业用药和施肥等产生的面源污染,网箱养殖对水环境的富营养化影响较小。此外,太阳山库湾的N/P值整体低于16(Redfield值),表现为潜在氮限制,养殖区的N/P值与对照区差异不显著(P > 0.05),表明现状下的网箱养殖投饵对水体的潜在性营养状态影响并不显著。Abstract: To investigate Influence of cage fish-farming on tempo-spatial distribution of nitrogen and phosphorus in Taiyangshan Bay of Zhelin Resverior, water temperature (WT), dissolved oxygen (DO), dissolved inorganic nitrogen (DIN), phosphate (${\rm{PO}}_4^{3-} $ -P) other physical & chemical factors were determined and analyzed in three different sampling area: control area(CS), nearshore area(NS) and fish cage area(FS) with different seasons from October 2018 to July 2019. The concentration and distribution of WT、DO、pH and Conductivity showed obvious seasonal variation and reached their maximum values in summer, spring and autumn, respectively. However, there were no significant difference between FS、NS and CS (P > 0.05). DIN concentration in FS and NS were significant higher than CS (P < 0.05),${\rm{PO}}_4^{3-} $ -P concentration of FS and CS in autumn were significant higher than NS (P < 0.05). DIN was dominated by nitrate nitrogen (${\rm{NO}}_3^{-} $ -N) with percentages of 93.35%, followed by ammonia nitrogen (${\rm{NH}}_4^{+} $ -N) with percentages of 6.00%, and nitrite nitrogen (${\rm{NO}}_2^{-} $ -N) was lowest with percentages of 0.65%, indicating that the thermodynamic equilibrium of N was reached. The trophic level of Taiyangshan Bay was moderate overall except that of nearshore in summer, indicating that compared with non-point source pollution caused by human production activities such as disorderly discharge of domestic sewage, irregular agricultural medicine and fertilization, cage culture had a smaller impact on the eutrophication of the water environment. In addition, The N/P value of Taiyangshan Bay was lower than 16 (Redfield value) as a whole, which mean there was a potential nitrogen limitation. The N/P value of Fish cage area was not significantly different from the control area (P > 0.05), indicating that the impact of cage culture on the potential nutritional status of water was not significant with the current cage culture scale. -
表 1 柘林水库太阳山库湾采样点坐标
Table 1. The Sampling sites coordinate in Taiyangshan Bay of Zhelin Reservior
采样区域
Sampling area采样点编号
Sampling Number采样点坐标Sampling sites coordinate 纬度(N)Latitude 经度(E)Longitude 近岸区
Nearshore areaNS1 115°30′15.96" 29°17′41.46" NS2 115°28′39.50" 29°18′02.57" 养殖区
Fish cage areaFS1 115°29′59.04" 29°17′11.65" FS2 115°29′52.28" 29°16′48.29" FS3 115°29′20.33" 29°16′54.33" FS4 115°28′58.48" 29°17′26.31" 对照区Control area CS 115°29′04.06" 29°16′06.13" 表 2 柘林水库太阳山库湾水环境因子空间变化特征
Table 2. Spatial variation in enviromental in Taiyangshan Bay of Zhelin Reservior
区域
Sampling area水温/℃
Water Temperature溶解氧/(mg·L−1) DO pH 电导率/(μS·cm−1) Conductivity 对照区(CS) 21.3±7.2 9.43±1.28 8.11±0.85 89.9±6.1 近岸区(NS) 21.2±7.1 10.26±2.47 8.64±0.69 89.4±6.2 养殖区(FS) 21.0±7.6 9.76±1.97 8.54±0.73 90.5±5.8 表 3 柘林水库太阳山库湾无机氮中不同形态氮的占比(%)
Table 3. Seasonal variation of dissolved inoganic nirigen composition in Taiyangshan Bay of Zhelin Reservior
季节Sampling time 氨氮 -N${\rm{NH}}_4^{+} $ 硝酸盐氮 -N${\rm{NO}}_3^{-} $ 亚硝酸盐氮 -N${\rm{NO}}_2^{-} $ 春季 5.57 93.57 0.86 夏季 5.10 94.46 0.43 秋季 11.57 87.53 0.91 冬季 1.75 97.83 0.42 平均值±标准差 6.00±4.08 93.35±4.29 0.65±0.26 -
[1] STEVENS C J. Nitrogen in the environment [J]. Science, 2019, 363(6427): 578-580. doi: 10.1126/science.aav8215 [2] ZEHR J P, KUDELA R M. Nitrogen cycle of the open ocean: From genes to ecosystems [J]. Annual Review of Marine Science, 2011, 3(1): 197-225. doi: 10.1146/annurev-marine-120709-142819 [3] 高勤峰, 张恭, 董双林. 网箱养殖生态学研究进展 [J]. 中国海洋大学学报(自然科学版), 2019, 49(3): 7-17. GAO Q F, ZHANG G, DONG S L. Reviews on cage-culture ecology [J]. Periodical of Ocean University of China, 2019, 49(3): 7-17(in Chinese).
[4] 李学梅, 孟子豪, 胡飞飞, 等. 网箱养鱼的氮磷排放 [J]. 淡水渔业, 2020, 50(4): 39-46. doi: 10.3969/j.issn.1000-6907.2020.04.006 LI X M, MENG Z H, HU F F, et al. Nitrogen and phosphorus emissions from cage fish culture [J]. Freshwater Fisheries, 2020, 50(4): 39-46(in Chinese). doi: 10.3969/j.issn.1000-6907.2020.04.006
[5] 徐淑敏, 齐占会, 史荣君, 等. 水产养殖对亚热带海湾氮磷营养盐时空分布的影响: 以深澳湾为例 [J]. 南方水产科学, 2019, 15(4): 29-38. doi: 10.12131/20190049 XU S M, QI Z H, SHI R J, et al. Influence of mariculure on tempo-spatial distribution of nitrogen and phosphorus in subtropical zone: A case study of Shen'ao Bay [J]. South China Fisheries Science, 2019, 15(4): 29-38(in Chinese). doi: 10.12131/20190049
[6] 杜岩岩, 娄忠玉, 张艳萍, 等. 网箱养殖对刘家峡水库浮游细菌群落组成及影响因素分析 [J]. 淡水渔业, 2018, 48(5): 11-16. doi: 10.3969/j.issn.1000-6907.2018.05.002 DU Y Y, LOU Z Y, ZHANG Y P, et al. Effect of cage culture on community structure and influencing factors of bacterioplankton in Liujiaxia Reservoir [J]. Freshwater Fisheries, 2018, 48(5): 11-16(in Chinese). doi: 10.3969/j.issn.1000-6907.2018.05.002
[7] 金相灿, 屠清瑛. 湖泊富营养化调查规范[M]. 2版. 北京: 中国环境科学出版社, 1990. JIN X C, TU Q Y. The standard methods in lake eutrophication (Second Edition)[M]. Beijing: China Environment Science Press, 1990(in Chinese).
[8] 王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准 [J]. 中国环境监测, 2002, 18(5): 47-49. doi: 10.3969/j.issn.1002-6002.2002.05.018 WANG M C, LIU X Q, ZHANG J H. Evaluate method and classification standard on lake eutrophication [J]. Environmental Monitoring in China, 2002, 18(5): 47-49(in Chinese). doi: 10.3969/j.issn.1002-6002.2002.05.018
[9] 杨美兰, 林钦, 黄洪挥, 等. 大鹏澳养殖水域溶解氧的变化及其与生态结构的关系 [J]. 中国水产科学, 2005, 12(3): 357-361. doi: 10.3321/j.issn:1005-8737.2005.03.021 YANG M L, LIN Q, HUANG H H, et al. Variation characteristics of DO levels in cage-culture waters of Dapengao Cove, South China Sea [J]. Journal of Fishery Sciences of China, 2005, 12(3): 357-361(in Chinese). doi: 10.3321/j.issn:1005-8737.2005.03.021
[10] HUANG Y C A, HUANG S C, MENG P J, et al. Influence of strong monsoon winds on the water quality around a marine cage-culture zone in a shallow and semi-enclosed bay in Taiwan [J]. Marine Pollution Bulletin, 2012, 64(4): 851-860. doi: 10.1016/j.marpolbul.2012.01.012 [11] 王毛兰, 刘景景. 鄱阳湖网箱养殖对水环境的影响: 以都昌水域为例 [J]. 环境化学, 2019, 38(10): 2348-2355. doi: 10.7524/j.issn.0254-6108.2018112615 WANG M L, LIU J J. The impact of cage fish-farming on the aquatic environment in Poyang Lake, China: A case study of Duchang water area [J]. Environmental Chemistry, 2019, 38(10): 2348-2355(in Chinese). doi: 10.7524/j.issn.0254-6108.2018112615
[12] BOUWMAN L, GOLDEWIJK K K, van der HOEK K W, et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period [J]. Proceedings of the National Academy of Sciences of the United States of America,, 2013, 110(52): 20882-20887. doi: 10.1073/pnas.1012878108 [13] VERDEGEM M C J. Nutrient discharge from aquaculture operations in function of system design and production environment [J]. Reviews in Aquaculture, 2013, 5(3): 158-171. doi: 10.1111/raq.12011 [14] 曾涛. 樟湖库湾鱼类网箱养殖区水体氮的时空变化特征 [J]. 渔业研究, 2018, 40(3): 177-185. ZENG T. Characteristics on spatial and temporal variations of nitrogen in water of cage culture areas of Zhanghu reservoir bay [J]. Journal of Fisheries Research, 2018, 40(3): 177-185(in Chinese).
[15] 贾后磊, 温琰茂. 哑铃湾网箱养殖水体中N的含量特征 [J]. 海洋环境科学, 2004, 23(2): 8-11. doi: 10.3969/j.issn.1007-6336.2004.02.003 JIA H L, WEN Y M. Content and character of nitrogen in water environment of cage culture, Yaling Bay [J]. Marine Environmental Science, 2004, 23(2): 8-11(in Chinese). doi: 10.3969/j.issn.1007-6336.2004.02.003
[16] 丘耀文. 珠江口水体的三氮特征 [J]. 热带海洋, 1992, 11(3): 84-88. QIU Y W. The characteristics of dissolved inorganic nitrogen in the water body of Zhujiang estuarine [J]. Tropic Oceanology, 1992, 11(3): 84-88(in Chinese).
[17] 胡春华, 周文斌, 王毛兰, 等. 鄱阳湖氮磷营养盐变化特征及潜在性富营养化评价 [J]. 湖泊科学, 2010, 22(5): 723-728. HU C H, ZHOU W B, WANG M L, et al. Inorganic nitrogen and phosphate and potential eutrophication assessment in Lake Poyang [J]. Journal of Lake Sciences, 2010, 22(5): 723-728(in Chinese).
[18] 李栋梁. 鄱阳湖氮磷营养盐特征研究[D]. 抚州: 东华理工大学, 2014. LI D L. The research on nitrogen and phosphorus nutrients characteristic of Poyang lake[D]. Fuzhou: East China Institute of Technology, 2014(in Chinese).
[19] 全栋, 史小红, 赵胜男, 等. 2006—2017年乌梁素海夏季水体营养状态及影响因子 [J]. 湖泊科学, 2019, 31(5): 1259-1267. doi: 10.18307/2019.0503 QUAN D, SHI X H, ZHAO S N, et al. Eutrophication of Lake Ulansuhai in 2006-2017 and its main impact factors [J]. Journal of Lake Sciences, 2019, 31(5): 1259-1267(in Chinese). doi: 10.18307/2019.0503
[20] 郭诗琪, 步秀芹, 廖洁, 等. 南宁市大王滩水库水质评价及富营养化分析 [J]. 环境保护科学, 2019, 45(5): 63-68. GUO S Q, BU X Q, LIAO J, et al. Water quality evaluation and eutrophication analysis of Dawangtan reservoir in Nanning [J]. Environmental Protection Science, 2019, 45(5): 63-68(in Chinese).
[21] ZHAO C Y, LIU S L, JIANG Z J, et al. Nitrogen purification potential limited by nitrite reduction process in coastal eutrophic wetlands [J]. Science of the Total Environment, 2019, 694: 133702. doi: 10.1016/j.scitotenv.2019.133702 [22] MEI L L, YANG X, ZHANG S Q, et al. Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N: P ratios under warming and nitrogen addition in a temperate meadow ecosystem [J]. Science of the Total Environment, 2019, 686: 1129-1139. doi: 10.1016/j.scitotenv.2019.06.035 [23] 魏潇, 李凡, 马元庆, 等. 2014年山东近岸海域海水氮磷营养盐含量特征及富营养化评价 [J]. 海洋湖沼通报, 2019(5): 103-109. WEI X, LI F, MA Y Q, et al. Characteristics of nitrogen and phosphorus nutrient concentrations and eutrophication evaluation of Shandong coastal waters in 2014 [J]. Transactions of Oceanology and Limnology, 2019(5): 103-109(in Chinese).
[24] 巴达日夫. 乌梁素海水环境因子时空分布特征及富营养化评价 [J]. 海洋湖沼通报, 2019(4): 108-114. BA D. Characterization of spatial and temporal distribution of environmental factors of wuliangsuhai lake and evaluation of its eutrophication [J]. Transactions of Oceanology and Limnology, 2019(4): 108-114(in Chinese).
[25] 李付宽, 郑剑锋, 贾泽宇, 等. 海河干流天津段氮磷对藻类生长的影响及动力学分析 [J]. 环境工程学报, 2017, 11(2): 959-964. doi: 10.12030/j.cjee.201509154 LI F K, ZHENG J F, JIA Z Y, et al. Impact of nitrogen and phosphorus on algal growth and kinetics in Haihe River of Tianjin [J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 959-964(in Chinese). doi: 10.12030/j.cjee.201509154
[26] WEBER T S, DEUTSCH C. Ocean nutrient ratios governed by plankton biogeography [J]. Nature, 2010, 467(7315): 550-554. doi: 10.1038/nature09403 [27] SPILLING K, CAMARENA-GÓMEZ M T, LIPSEWERS T, et al. Impacts of reduced inorganic N: P ratio on three distinct plankton communities in the Humboldt upwelling system [J]. Marine Biology, 2019, 166(9): 1-17. [28] REDFIELD A C. The biological control of chemical factors in the environment [J]. Science Progress, 1960, 11: 150-170.