-
磷作为细胞中脱氧核糖核酸、核糖核酸的构成元素之一,在生物的生长发育、遗传代谢方面起着至关重要的作用[1-2]。天然水体中的可溶性磷酸盐大部分由各种价态的正磷酸盐组成,主要以H3PO4、
${\rm{H}}_2{\rm{PO}}_4^{-} $ 、${\rm{HPO}}_4^{2-} $ 、${\rm{PO}}_4^{3-} $ 形式存在[3],可作为营养物质被藻类吸收。其他形式的可溶性磷酸盐也会逐渐被分解成正磷酸盐[4],其中包括农药和肥料中含有的有机磷酸盐以及洗衣粉中含有的聚合磷酸盐等。近年来随着工农业的不断发展,过量废水排放引发生态环境失衡,高浓度磷导致水体富营养化,有毒藻类大量生长,从而造成溶解氧含量枯竭,水质下降,正常水生生物死亡[5-,6]。在临床诊断中,血清中的磷酸盐水平被确立为常规血清检验的一部分。体液中的磷酸盐水平可以为诊断甲状旁腺功能亢进,维生素D缺乏症等疾病提供有价值的参考信息[7]。当血液中磷酸盐浓度超过正常水平时(即高磷血症),沉淀钙会减少维生素D的产生以及干扰甲状腺旁激素介导的骨吸收,进而引起低钙血症[8]。另一方面,当磷酸盐浓度低于正常水平时,细胞内ATP水平降低,可能导致依赖磷酸盐化合物的细胞出现功能性损伤[9].关于磷酸盐浓度的规定已有相关报道,欧盟立法规定将水中含有0.1 mg·L−1的磷酸盐作为判断蓝藻爆发的指标[10]。天然河水中磷酸盐被允许的最大含量在0.32×10−6 mol·L−1(9.8 μg·L−1),废水中磷酸盐被允许的浓度在0.0143—0.143×10−3 mol·L−1(0.4418 —4.418 mg·L−1)范围内[11]。作为临床诊断标准,人体唾液中磷酸盐正常检测浓度在5—14×10−3 mol·L−1(154.5 —432.6 mg·L−1)[12],人体血液中磷酸盐正常检测浓度在0.81—1.45×10−3 mol·L−1(25.029—43.26 mg·L−1)范围内[13]。因此不仅是从生态环境角度还是生物医学角度,磷酸盐测定是一个值得关注的问题,尽管关于磷酸盐的测定方法报道很多,但能够实现准确快速且实时监控磷酸盐还存在一些技术难点。相关发表的文章中针检测磷酸盐水平的方法主要有比色法、色谱法、光学荧光法以及电化学法[14-17],各篇文章研究的主要目的在于开发灵敏度更高、检测限更低、抗干扰能力更强,且能够提高经济效益,满足社会发展需要的方法。目前检测水溶液中磷酸盐的标准方法是Murphy和Riley提出的比色法[18]。该方法是以抗坏血酸为还原剂,将钼酸铵与抗坏血酸与锑(Ⅲ)添加到磷酸盐样品中,生成蓝色的磷钼酸盐络合物,最后用分光光度计光学测定磷酸盐的浓度,反应方程式如下:
然而磷钼蓝法易受到砷酸盐、硅酸盐、硫化物等化合物以及样品浊度的干扰[19],实验过程繁琐冗长,操作环境要求较高无法实现在线监测,并且操作中使用的化学物质对健康有害,如钼。电化学方法具有弥补上述部分缺陷的优势,它具有操作简单、携带方便、灵敏度高、检测限低,对分析物可以进行连续快速分析的优越性能[20]。
随着经济的快速发展,我国内陆湖泊河流等水生环境面临的压力与日俱增,城市建设对于环境监控的需求日趋增大,因此研究和开发适用于环境检测的实时在线监控系统是当前面临的挑战[21]。随着无线传感网络的出现,卫星遥感监测方法也变得很流行[22],其中电化学传感器可作为系统的核心部分,识别样本并将样品浓度转化为电信号后,输出可分析的数据。电化学传感器中离子选择电极是最早和最简单的传感器之一,用于直接进行电化学检测磷酸盐,其中离子选择性电极可选择掺杂或者不掺杂离子载体的金属电极或者聚合物膜修饰电极。其他电化学方法还包括安培分析、电导分析等。电化学传感器在原位实时、快速检测以及小型化、智能化等方面具有较突出的优势,不仅在环境领域受到广泛关注,在食品安全、医学检验等领域得到广泛应用。
本文简要综述了近年来实际应用于检测无机磷酸盐的电化学技术的研究现状,其中包括电位法、安培法、电导法等,以及针对各种传感器在检测限、选择性等性能方面进行比较探讨。
电化学方法在无机磷酸盐检测中的应用
Applications of electrochemical methods in inorganic phosphate detection
-
摘要: 过多的磷将导致严重的生态环境和生理健康危害,包括水体富营养化,水生生物死亡以及人类的高磷血症等。因此,针对磷酸盐检测技术的研究变得至关重要。与传统比色法相比,电化学方法具有很多优势,包括选择性强,成本低,响应时间短且能满足在线监测的要求。本篇综述讨论电化学传感器在检测无机磷酸盐方面的研究进展,按照使用的电化学检测技术(电位法、安培法、伏安法、电导分析法等)对各种传感器进行分类。根据灵敏度、特异性、应用范围以及现场测量适用性等性能,对各类传感器的优劣势进行分析比较。Abstract: Excess phosphate in water could lead to serious ecological and physiological problems, including eutrophication, death of aquatic organisms and hyperphosphatemia of people. Hence, it is necessary and exigent to study analytical techniques for detection of phosphate. Electrochemical methods for phosphate sensing have many advantages over colourimetry, including excellent selectivity, cost-effectiveness, short response time and online operation. The review considers the progress in the development of phosphate sensors prepared by electrochemical methods. The various sensing strategies can be classified as potentiometry, amperometry, voltammetry, conductometric analysis and others on the basis of electrochemical detection technology. The advantages and disadvantages of various phosphate sensors are assessed detailedly in this review on basis of their performances, including sensitivity, selectivity, application and suitability for field measurements.
-
Key words:
- inorganic phosphate /
- electrochemical sensing /
- potentiometry /
- amperometry /
- biosensors
-
图 1 磷酸盐传感的信号反应机制[33]
Figure 1. Response mechanism of the phosphate sensing
图 2 (A)磷酸盐传感的连续流动装置图;(B)电极表面磷钼酸盐络合物的形成及还原反应[48]
Figure 2. (A)Schematic representation of the apparatus for continuous flow for phosphate analysis; (B)Reaction involved in the formation of the phosphomolybdate complex and its reduction at the working electrode surface
表 1 电位法
Table 1. Potentiometry
方法类型
Methods电极
Electrodes线性范围/ (mol·L−1)
Concertration range检测限 (μmol·L−1)
Detection limit应用领域
Application参考文献
Reference电位法——离子载体膜选择性电极 双(二溴苯基锡烷基)甲烷/聚氯乙烯膜 5×10−5—5×10−3 0.5 — [30] 壳聚糖-蒙皂石/聚氯乙烯膜 1×10−6—1×10−5 0.6 — [31] 有机锡/聚氯乙烯膜 5×10−6—1×10−1 1 — [32] Cu2+−BPMP/聚氯乙烯膜 3×10−6—5×10−5 0.5 矿泉水 [33] 电位法——刚性基质膜选择性电极 沸石/碳糊电极 1.58×10−5—1×10−2 12.8 肥料 [34] 铝-磷酸铝-铜粉/玻璃管 1×10−6—1×10−1 <1 河水、湖水 [35] 硫酸钴-硫酸钠膜/玻碳电极 1×10−4—1×10−1 63 — [36] 钴-氧化钴/镁铝复合金属氧化
物/聚氯乙烯膜1×10−4—1×10−1 76.5 — [37] 钼电极 1×10−5—1×10−1 1.9 河水 [38] 钼酸铵/银纳米线/丝网印刷电极 5×10−6—1×10−3 3 湖水 [39] 表 2 安培法及电化学生物传感器
Table 2. Amperometry and Electrochemical biosensors
方法类型
Methods电极
Electrodes线性范围/ (mol·L−1)
Concertration range检测限/ (μmol·L−1)
Detection limit应用领域
Application参考文献
Reference安培法——电化学还原钼酸铵 纸基/丝网印刷电极 1×10−5—3×10−4 4 河水 [47] 炭黑丝网印刷电极/
自动注射
分析系统1×10−6—8×10−5 6 水龙头,河水,湖水 [48] 碳糊电极 1×10−6—2×10−5 0.3 海水 [49] 生物电分析法——
单酶传感器金纳米阵列-氧化亚铜-聚(二烯丙基二甲基氯化铵)/PyOx 1×10−8—8×10−5 4×10−4 食品 [50] 金纳米阵列/PyOx 1.25×10−7—1×10−3 0.1 池塘水 [51] 生物电分析法——
双酶传感器聚吡咯膜/NP-XOD 电位型:2×10−2—2×10−1 2×104 河水 [52] 安培型:1×10−4—1×10−3 1×104 — 生物电分析法——
双酶传感器牛血清白蛋白-戊二醛/NP-XOD-
牛血清白蛋白-戊二醛1×10−6—5×10−5 20 河水 [53] 生物电分析法——
多酶传感器MP-AP-MR-GOD/铂电极 1×10−7—1×10−6 0.01 废水 [54] MP-MR-GOD/无机皂石黏土 1×10−6—5×10−5 1 地表水 [55] 注:PyOx:丙酮酸氧化酶、NP:核苷磷酸化酶、XOD:黄嘌呤氧化酶、MP:麦芽糖磷酸化酶、AP:酸性磷酸酶、MR:突变酶、GOD:葡萄糖氧化酶. -
[1] 骆芳萍. 基于金属钼离子选择电极的磷酸根检测方法的研究[D]. 无锡: 江南大学, 2019. LUO F P. Study on phosphate detection method based onmetal molybdenum ion selective electrode[D]. Wuxi: Jiangnan University, 2019(in Chinese).
[2] 崔丽娜. 水质磷酸盐检测技术研究[D]. 上海: 上海海洋大学, 2018. CUI L N. Study on the determination technology of phosphate in water[D]. Shanghai: Shanghai Ocean University, 2018(in Chinese).
[3] KATAYEV E, USTYNYUK Y A, SESSLER J L. Receptors for tetrahedral oxyanions [J]. Coordination Chemistry Reviews, 2006, 250(23): 3004-3037. [4] WARWICK C, GUERREIRO A, SOARES A. Sensing and analysis of soluble phosphates in environmental samples: A review [J]. Biosensors and Bioelectronics, 2012, 41(1): 1-11. [5] 喻航. 水体富营养化的危害及防治对策 [J]. 智能城市, 2019, 5(17): 147-148. YU H. Harm of water eutrophication and prevention measures [J]. Intelligent City, 2019, 5(17): 147-148(in Chinese).
[6] TIESSEN H. Phosphorus in the Global Environment[M]. Berlin: Springer Netherlands, 2008: 631-632. [7] KAWASAKI H, SATO K, OGAWA J, et al. Determination of inorganic phosphate by flow injection method with immobilized enzymes and chemiluminescence detection [J]. Analytical Biochemistry, 1989, 182(2): 366-370. doi: 10.1016/0003-2697(89)90609-X [8] 韦珍妮. 浅谈高磷血症致慢性肾脏病血管钙化的研究及治疗进展 [J]. 临床检验杂志(电子版), 2020, 9(1): 241-242. WEI Z N. Discussing the research and treatment progress of vascular calcification of chronic kidney disease caused by hyperphosphatemia [J]. Clinical Laboratory Journal (Electronic Edition), 2020, 9(1): 241-242(in Chinese).
[9] VORUM H, DITZEL J. Disturbance of Inorganic Phosphate Metabolism in Diabetes Mellitus: Its Relevance to the Pathogenesis of Diabetic Retinopathy [J]. Journal of Ophthalmology, 2014, 2014(8): 1-8. [10] HANRAHAN G, GLEDHILL M, FLETCHER P J, et al. High temporal resolution field monitoring of phosphate in the river frome using flow injection with diode array detection [J]. Analytica Chimica Acta, 2001, 440(1): 55-62. doi: 10.1016/S0003-2670(00)01395-7 [11] BERCHMANS S, ISSA T B, SINGH P. Determination of inorganic phosphate by electroanalytical methods: A review [J]. Analytica Chimica Acta, 2012, 729(11): 7-20. [12] CAREY C M, VOGEL G L. Measurement of calcium activity in oral fluids by ion selective electrode: Method evaluation and simplified calculation of ion activity products [J]. Journal of Research of the National Institute of Standards & Technology, 2000, 105(2): 267. [13] TOBEY S L, ANSLYN E V. Determination of inorganic phosphate in serum and saliva using a synthetic receptor [J]. Organic Letters, 2003, 5(12): 2029-2031. doi: 10.1021/ol034427x [14] LIU W Q, DU Z F, QIAN Y, et al. A specific colorimetric probe for phosphate detection based on anti-aggregation of gold nanoparticles [J]. Sensors & Actuators B Chemical, 2013, 176(1): 927-931. [15] WU H F, TONG C L. A specific turn-on fluorescent sensing for ultrasensitive and selective detection of phosphate in environmental samples based on antenna effect-improved FRET by surfactant [J]. Acs Sensors, 2018, 3(8): 1539-1545. doi: 10.1021/acssensors.8b00343 [16] CHEN C, ZHAO J H, LU Y Z, et al. A fluorescence immunoassay based on the phosphate-triggered fluorescence turn-on detection of alkaline phosphatase [J]. Analytical Chemistry, 2018, 90(5): 3505-3511. doi: 10.1021/acs.analchem.7b05325 [17] OGATA F, DAISUKE I, MEGUMU T. Adsorption of phosphate ion in aqueous solutions by calcined cobalt hydroxide at different temperatures [J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1570-1577. doi: 10.1016/j.jece.2015.05.028 [18] MURPHY J, RILEY J P. Modified single solution method for the determination of phosphate in natural water [J]. Analytica Chimica Acta, 1962, 27(1): 31-36. [19] UDNAN Y, MCKELVIE I D, GRACE M R, et al. Evaluation of on-line preconcentration and flow-injection amperometry for phosphate determination in fresh and marine waters [J]. Talanta, 2005, 66(2): 461-466. doi: 10.1016/j.talanta.2004.12.064 [20] 丁家旺, 秦伟. 电化学传感技术在海洋环境监测中的应用 [J]. 环境化学, 2013, 33(1): 53-61. DING J W, QING W. Applications of electrochemical sensing technologies in marine environmental monitoring [J]. Environmental Chemistry, 2013, 33(1): 53-61(in Chinese).
[21] MILLS G, FONES G. A review ofin situmethods and sensors for monitoring the marine environment [J]. Sensor Review, 2012, 32(1): 17-28. doi: 10.1108/02602281211197116 [22] 王维虎. 基于物联网的湖泊水域岸线及水质监控技术的研究[D]. 武汉: 华中师范大学, 2015. WANG W H. The research of monitoring technology shoreline and water quality of lake bassed on IOT[D]. Wuhan: Central China Normal University, 2015(in Chinese).
[23] 吴玲. 一种高灵敏检测尿酸的聚阳离子纳米复合膜电化学传感器//[C]. 北京: 中国化学会第29届学术年会2014: 300. WU L. A highly sensitive polycation nanocomposite membrane electrochemical sensor for detecting uric acid[C]. Beijing: the 29 th Academic Annual Conference of Chinese Chemical Society 2014: 300(in Chinese).
[24] 付海曦, 刘威, 张春辉, 等. 水体中重金属离子的检测方法研究进展 [J]. 理化检验(化学分册), 2012, 48(4): 496-503. FU H XI, LIU W, ZHANG C H, et al. Recent advance of detection method of heavy metal ions in water [J]. Physical and Chemical Inspection (Chemical Volume), 2012, 48(4): 496-503(in Chinese).
[25] HUSSAIN R, KHAN M Q, KHAN A A. Electrochemical sensing of Pb2+ ion in water by ion selective membrane electrode based on Polypyrrole titanium(IV)sulphosalicylo phosphate cation exchange nanocomposite [J]. Groundwater for Sustainable Development, 2019, 8(1): 216-225. [26] BAIG U, KHAN A A. Polyurethane-based cation exchange composite membranes: Preparation, characterization and its application in development of ion-selective electrode for detection of copper(II) [J]. Journal of Industrial and Engineering Chemistry, 2015, 29(1): 392-399. [27] PAL S, GHOSH T K, GHOSH R, et al. Recent advances in recognition, sensing and extraction of phosphates: 2015 onwards [J]. Coordination Chemistry Reviews, 2020: 405. [28] EVGENY A K, YURI A U, JONATHAN L S. Receptors for tetrahedral oxyanions [J]. Coordination Chemistry Reviews, 2006, 250(23-24): 3004-3037. doi: 10.1016/j.ccr.2006.04.013 [29] HYDE A M, ZULTANSKI S L, WALDMAN J H, et al. General principles and strategies for salting-out informed by the Hofmeister series [J]. Organic Process Research & Development, 2017, 21(9): 1355-1370. [30] SATOH H, MIYAZAKI Y, TANIUCHI S, et al. Improvement of a phosphate ion-selective microsensor using bis(dibromophenylstannyl)methane as a carrier. [J]. Analytical Chemistry, 2017, 33(1): 825-830. [31] TOPCU C, CAGLAR B, ONDER A, et al. Structural characterization of chitosan-smectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphate-selective sensor [J]. Materials Research Bulletin, 2018, 98(1): 288-299. [32] LIU D, CHEN W C, YANG R H, et al. Polymeric membrane phosphate sensitive electrode based on binuclear organotin compound [J]. Analytica Chimica Acta, 1997, 338(3): 209-214. doi: 10.1016/S0003-2670(96)00382-0 [33] 李龙. 基于新型分子识别机制的电位型传感器技术研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2016. LI L. Studies on Potentiometric Sensing Platforms Based on Novel Molecular Recognition Mechanisms[D] Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2016(in Chinese).
[34] EJHIEH A N, MASOUDIPOUR N. Application of a new potentiometric method for determination of phosphate based on a surfactant-modified zeolite carbon-paste electrode (SMZ-CPE) [J]. Analytica Chimica Acta, 2010, 658(1): 68-74. doi: 10.1016/j.aca.2009.10.064 [35] TAFESSE F, ENEMCHUKWU M. Fabrication of new solid state phosphate selective electrodes for environmental monitoring [J]. Talanta, 2011, 83(5): 1495. [36] 姜涛钦, 杨慧中. 一种固态磷酸根离子选择电极 [J]. 环境工程学报, 2016, 10(10): 5631-5636. doi: 10.12030/j.cjee.201504250 JIANG T X, YANG H Z. A solid-state phosphate ion-selective electrode [J]. Journal of Environmental Engineering, 2016, 10(10): 5631-5636(in Chinese). doi: 10.12030/j.cjee.201504250
[37] 李琳娜. 基于离子选择电极的磷酸根检测的研究[D]. 无锡: 江南大学, 2015. LI L N. Study on phosphate detection based on ion selective electrode[D]. Wuxi: Jiangnan University, 2015(in Chinese).
[38] YANG H Z, JIANG T Q, YU X D, et al. Phosphate sensor using molybdenum [J]. Journal of the Electrochemical Society, 2016, 163(9): 479-484. doi: 10.1149/2.0161609jes [39] KABIR M F, RAHMAN M T, GURUNG A, et al. Electrochemical phosphate sensors using silver nanowires treated screen printed electrodes [J]. IEEE Sensors Journal, 2018, 18(9): 3480-3485. doi: 10.1109/JSEN.2018.2808163 [40] 宋彩侨. 固态离子选择性电极检测血清钾离子[D]. 大连: 大连理工大学, 2019. SONG C Q. Determination of serum potassium ion by solid-state ion-selective electrodes[D]. Dalian: Dalian University of Technology, 2019(in Chinese).
[41] 秦溧. 基于二维MOF材料的纳米酶传感器阵列对磷酸盐的检测及其水解过程的监控[D]. 南京: 南京大学, 2019. QIN S. 2D-MOF nanozyme sensor arrays for probing phosphates and enzymatic hydrolysis[D]. Nanjing: Nanjing University, 2019(in Chinese).
[42] 卢圆圆. 化学修饰电极对土壤重金属和磷酸盐离子的灵敏检测[D]. 杭州: 浙江大学, 2019. LU Y Y. The sensitive detection of heavy mental ions and phosphate anions in soil by chemically modified electrodes[D]. Hangzhou: Zhejiang University, 2019(in Chinese).
[43] XIAO D, YUAN H Y, LI J, et al. Surface modified cobalt-based sensor as a phosphate-sensitive electrode [J]. Analytical Chemistry, 1995, 67(2): 288-291. doi: 10.1021/ac00098a009 [44] 吴星. 改性UiO-66和氢氧化锆对磷酸根去除性能研究[D]. 南昌: 南昌航空大学, 2018. WU X. Study on the removal performance of phosphate by modified UiO-66 and zirconium hydroxide[D]. Nangchang: Engineering Nanchang Hangkong University, 2018(in Chinese).
[45] KHALED E, HASSAN H. N. A, GIRGIS A, METELKA R. Construction of novel simple phosphate screen-printed and carbon paste ion-selective electrodes [J]. Talanta, 2008, 77(2): 737-743. doi: 10.1016/j.talanta.2008.07.018 [46] KUGIMIYA A, KOHARA K. Biomimetic sensor for cAMP using an ion-sensitive field-effect transistor [J]. Materials Science & Engineering C, 2009, 29(3): 959-962. [47] CINTI S, TALARICO D, PALLESC G, et al. Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate [J]. Analytica Chimica Acta, 2016, 919(1): 78-84. [48] TALARICO D, CINTI S, ARDUINI F, et al. Phosphate detection through a cost-effective carbon black nanoparticle-modified screen-printed electrode embedded in a continuous flow system [J]. Environmental Science & Technology, 2015, 49(13): 7934-7939. [49] QUINTANA J C, IDRISSI L, PALLESCHI G, et al. Investigation of amperometric detection of phosphate: Application in seawater and cyanobacterial biofilm samples [J]. Talanta, 2004, 63(3): 574. [50] HE B S, LIU H. Electrochemical biosensor based on pyruvate oxidase immobilized AuNRs@Cu2O-NDs as electroactive probes loaded poly (diallyldimethylammonium chloride) functionalized graphene for the detection of phosphate[J]. Sensors and Actuators B: Chemical, 2020, 304: 127-303. [51] OGABIELA E, ADELOJU S B, CUI J W, et al. A novel ultrasensitive phosphate amperometric nanobiosensor based on the integration of pyruvate oxidase with highly ordered gold nanowires array [J]. Biosensors & Bioelectronics, 2015, 71(1): 278-285. [52] LAWAL A, ADELOJU S B. Polypyrrole based amperometric and potentiometric phosphate biosensors: A comparative study B [J]. Biosensors & Bioelectronics, 2013, 40(1): 377-384. [53] ADELOJU S B, LAWAL A T. Fabrication of a bilayer potentiometric phosphate biosensor by cross-link immobilization with bovine serum albumin and glutaraldehyde [J]. Analytica Chimica Acta, 2011, 691(1-2): 89-94. doi: 10.1016/j.aca.2011.02.020 [54] CONRATH N, GRUNDING B, HUWEL S, et al. A novel enzyme sensor for the determination of inorganic phosphate [J]. Analytica Chimica Acta, 1995, 309(1-3): 47-52. doi: 10.1016/0003-2670(95)00065-8 [55] MOUSTY C, COSNIER S, SHAN D, et al. Trienzymatic biosensor for the determination of inorganic phosphate [J]. Analytica Chimica Acta, 2001, 443(1): 1-8. doi: 10.1016/S0003-2670(01)01188-6 [56] MARIAULLE P, SINAPI F, LAMBERTS L, et al. Application of electrodes modified with ion-exchange polymers for the amperometric detection of non-redox cations and anions in combination to ion chromatography [J]. Electrochimica Acta, 2001, 46(23): 3543-3553. doi: 10.1016/S0013-4686(01)00636-3 [57] TORRES F M, ESTELA J M. Sequential injection spectrophotometric determination of orthophosphate in beverages, wastewaters and urine samples by electrogeneration of molybdenum blue using tubular flow-through electrodes [J]. Analytica Chimica Acta, 2004, 510(1): 61-68. doi: 10.1016/j.aca.2003.12.051 [58] HE J, SUN H, DAI J, et al. In situ growth of nanoflake and nanoflower-like Ni hydrated hydroxide on the surface of Ni foam as a free-standing electrode for high-performance phosphate detection[J]. Journal of Hazardous Materials, 2020, 392: 122-313. https://doi.org/10.1016/j.jhazmat.2020.122313. [59] UPADHYAY L S B, VERMA N. Recent advances in phosphate biosensors [J]. Biotechnology Letters, 2015, 37(7): 1335-1345. doi: 10.1007/s10529-015-1823-3 [60] COSNIER S, GONDRA C, WATELET J C, et al. A bienzyme electrode (alkaline phosphatase-polyphenol oxidase) for the amperometric determination of phosphate [J]. Analytical Chemistry, 1998, 70(18): 3952-3956. doi: 10.1021/ac980125a [61] HOUSSEMEDDINE E, CLAUDE D. A self-assembled monolayers based conductometric algal whole cell biosensor for water monitoring [J]. Microchimica Acta, 2008, 163(3-4): 79-184. [62] ZHANG Z Q, JAFFREZIC R N, BESSUEILLE F O, et al. Development of a conductometric phosphate biosensor based on tri-layer maltose phosphorylase composite films [J]. Analytica Chimica Acta, 2008, 615(1): 73-79. doi: 10.1016/j.aca.2008.03.044 [63] XUE Y, ZHENG X Y, LI G X. Determination of phosphate in water by means of a new electrochemiluminescence technique based on the combination of liquid–liquid extraction with benzene-modified carbon paste electrode [J]. Talanta, 2007, 72(2): 450-456. doi: 10.1016/j.talanta.2006.11.003 [64] XU J J, PENG Y, BAO N, et al. In-channel indirect amperometric detection of nonelectroactive anions for electrophoresis on a poly(dimethylsiloxane) microchip [J]. Electrophoresis, 2005, 26(19): 3615-3621. doi: 10.1002/elps.200410401