-
当前,湖泊、湖库型河道和池塘等缓流水体的富营养化已成为全球一个十分严重的水环境污染问题,而引发缓流水体富营养化的关键营养元素之一是磷[1]。缓流水体中的磷有两个来源:外源和内源。在外源性磷的输入得到有效控制后,控制底泥中磷向上覆水的释放便成为了缓流水体富营养化防治的关键。目前内源磷释放控制技术主要包括底泥疏浚[2]、曝气增氧[3]、硝酸钙添加[4]、铝盐化学钝化[5]、物理惰性覆盖[6]和活性覆盖[7-19]等。其中,活性覆盖技术,也就是将钝磷能力强的固体材料投加到底泥-上覆水界面上方形成一层活性覆盖层以降低底泥内源磷向上覆水体释放风险的技术,近年来受到国内外研究学者的广泛青睐,被认为是一种极具应用前景的底泥内源磷释放控制技术[7-19]。
运用活性覆盖技术控制底泥磷释放的一个关键问题就是寻找到合适的活性覆盖材料。目前国内外的研究人员已经考察了铁改性方解石[7]、铁铝污泥[8]、热改性凹凸棒土[9]、锆改性沸石[10-11]、镧改性黏土[12]、镧改性沸石[13-16]、氢氧化镧[17-18]和氢氧化镁[19]等作为固体吸附材料对底泥内源磷释放的控制效果。其中,氢氧化镧对水中磷酸盐的吸附能力强,并且对底泥中潜在可移动态磷和生物可利性磷的钝化能力好,极具应用前景[17]。但是,单纯使用氢氧化镧控制底泥中磷释放存在成本高、镧的有效利用率低等问题。镁是自然界广泛存在的碱土金属元素,是人体必须的金属元素之一。氢氧化镁是一种无毒无味的白色晶体粉末,对水中的磷酸盐具有良好的去除能力,对水体内源磷释放的控制效果较好[19]。目前国内外关于利用镁镧复合材料控制水体内源磷释放的研究却鲜见报道。过硫酸氢钾(PMS)是一种常见、高效和安全的抑菌剂和氧化剂,可与水发生氧化反应生成不稳定的臭氧,进而生成新生态氧,可用于水体底泥的改良[20-22]。将PMS添加和Mg/La复合材料覆盖进行联用,可能也可以用于水体底泥中磷释放的控制。但是,目前国内外关于PMS添加和Mg/La复合材料覆盖组合技术控制水体底泥磷释放的研究却鲜见报道。
本研究采用共沉淀法制备Mg/La复合材料,通过批量吸附实验和X射线光电子能谱分析技术(XPS)考察Mg/La复合材料对水中磷酸盐的吸附特性及相关吸附机理。通过构建实验室模拟反应体系,考察Mg/La复合材料覆盖、PMS添加与联用对水体内源磷释放的控制效果,探讨相关的控磷机制。本文旨在为应用Mg/La复合材料及其与过硫酸氢钾联用控制缓流水体底泥内源磷释放提供科学依据。
镁镧复合材料及其与过硫酸氢钾联用对水体内源磷释放的控制效果与机制
Efficiency and mechanism of magnesium/lanthanum composite material and its combination with potassium hydrogen persulfate for the control of phosphorus release from sediment
-
摘要: 本文采用共沉淀法制备了氢氧化镁/氢氧化镧复合材料(Mg/La复合材料),通过批量吸附实验考察了Mg/La复合材料对水中磷酸盐的吸附特性,采用X射线光电子能谱探索了相关的吸磷机理,再通过底泥培养实验考察了Mg/La复合材料覆盖、过硫酸氢钾(PMS)添加及联用对水体底泥磷释放的控制效果,并探讨了相关的控磷机制。结果发现,Langmuir和Freundlich等温吸附模型均可描述Mg/La复合材料对水中磷酸盐的等温吸附。与准一级动力学模型相比,准二级和Elovich动力学模型更适合于Mg/La复合材料对水中磷酸盐的吸附动力学过程。Mg/La复合材料对水中磷酸盐的吸附去除具有较为广阔的pH适应性。溶液共存Ca2+极大地促进了Mg/La复合材料对水中磷酸盐的吸附,而共存的Na+、K+、Mg2+、Cl−、
${{\rm{HCO}}_3^{-} }$ 和${{\rm{SO}}_4^{2-}} $ 的影响可忽略不计。Mg/La复合材料吸附水中磷酸盐的机理为La(OH)3与磷酸盐之间的配位体交换作用和Mg(OH)2与磷酸盐之间的化学反应作用。Mg/La复合材料单独覆盖及联合或单独使用PMS添加均可以有效抑制缺氧条件下水体底泥内源磷的释放,使得上覆水体中溶解态活性磷(SPR)浓度处于很低水平,并且它们的控磷效果均优于单独添加PMS。绝大多数被Mg/La复合材料覆盖层所吸附的磷以盐酸提取态磷(HCl-P)和残渣态磷(Res-P)形式存在,在缺氧且pH(5—9)条件下难以被重新释放。Mg/La复合材料是一种有希望用于控制缺氧条件下水体底泥磷释放的活性覆盖材料。Abstract: In this study, a composite material of magnesium hydroxide and lanthanum hydroxide (Mg/La composite material) was prepared, and the characteristics and mechanism of phosphate adsorption onto Mg/La composite material from water were investigated through batch adsorption experiments and X-ray photoelectron spectroscopy (XPS). The efficiencies of Mg/La composite material capping, potassium hydrogen persulfate (PMS) injection, and their combined use for the control of the release of phosphorus (P) from sediment were investigated through sediment culture experiment, and the related controlling mechanisms were also explored. It was found that the Langmuir and Freundlich isotherm models both are suitable to describe the adsorption isotherm data of phosphate from water on Mg/La composite material. The adsorption kinetics of phosphate from water on Mg/La composite materials better followed the pseudo-second-order and Elovich kinetic models than the pseudo-first-order kinetic model. The phosphate adsorption onto Mg/La composite material had a wide effective pH range. The uptake of phosphate from water by Mg/La composite material was greatly promoted by the coexistence of Ca2+, but the presence of Na+, K+, Mg2+, Cl−,${\rm{HCO}}_3^{-} $ and${\rm{SO}}_4^{2-} $ had a negligible influence on the uptake of phosphate by Mg/La composite material. Under anoxic condition, Mg/La composite material capping could effectively control the release of P from sediment into the overlying water, making the SPR (soluble reactive P) concentration in the overlying water at a very low level. The combined use of Mg/La composite material capping and PMS injection also could effectively control the release of P from sediment into the overlying water under anoxic condition. The controlling efficiency of Mg/La composite material capping had no significant difference to that of Mg/La composite material capping combined with PMS injection. However, the controlling efficiencies of Mg/La composite material capping and its combination with PMS injection both were much higher than that of PMS injection. The vast majority of P bound by the Mg/La composite material-based capping layer existed in the form of HCl-extractable P (HCl-P) and residual P (Res-P), which are difficult to be re-released into the overlying water under the conditions of common pH(5—9) and anoxic environment. Mg/La composite material is a promising active capping material for the interception of sediment-P release into the overlying water under anoxic condition. -
表 1 Langmuir和Freundlich等温吸附模型参数的拟合值
Table 1. Parameters of Langmuir and Freundlich isothermal adsorption models for phosphate adsorption onto Mg(OH)2/La(OH)3 composite material
Langmuir等温吸附模型 Freundlich等温吸附模型 qmax/(mg·g-1) KL/(L·mg-1) R2 KF 1/n R2 15.5 0.827 0.996 10.1 0.106 0.919 -
[1] TU L Y, JAROSCH K A, SCHNEIDER T, et al. Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959 [J]. Science of the Total Environment, 2019, 685: 806-817. doi: 10.1016/j.scitotenv.2019.06.243 [2] OLDENBORG K A, STEINMAN A D. Impact of sediment dredging on sediment phosphorus flux in a restored riparian wetland [J]. Science of the Total Environment, 2019, 650: 1969-1979. doi: 10.1016/j.scitotenv.2018.09.298 [3] CHEN J J, LU S Y, ZHAO Y K, et al. Effects of overlying water aeration on phosphorus fractions and alkaline phosphatase activity in surface sediment [J]. Journal of Environmental Sciences, 2011, 23(2): 206-211. doi: 10.1016/S1001-0742(10)60394-4 [4] FOY R H. Suppression of phosphorus release from lake sediments by the addition of nitrate [J]. Water Research, 1986, 20(11): 1345-1351. doi: 10.1016/0043-1354(86)90132-6 [5] HUSER B J, EGEMOSE S, HARPER H, et al. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality [J]. Water Research, 2016, 97: 122-132. doi: 10.1016/j.watres.2015.06.051 [6] XU D, DING S M, SUN Q, et al. Evaluation of in situ capping with clean soils to control phosphate release from sediments [J]. Science of the Total Environment, 2012, 438: 334-341. doi: 10.1016/j.scitotenv.2012.08.053 [7] 柏晓云, 林建伟, 詹艳慧, 等. 利用铁改性方解石作为活性覆盖材料控制水体内源磷的释放 [J]. 环境科学, 2020, 41(3): 1296-1307. BAI X Y, LIN J W, ZHAN Y H, et al. Use of iron-modified calcite as an active capping material to control phosphorus release from sediments in surface water bodies [J]. Environmental Science, 2020, 41(3): 1296-1307(in Chinese).
[8] WANG C H, LIANG J C, PEI Y S, et al. A method for determining the treatment dosage of drinking water treatment residuals for effective phosphorus immobilization in sediments [J]. Ecological Engineering, 2013, 60: 421-427. doi: 10.1016/j.ecoleng.2013.09.045 [9] YIN H B, KONG M, HAN M X, et al. Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorous loading from shallow eutrophic lakes [J]. Environmental Pollution, 2016, 219: 568-579. doi: 10.1016/j.envpol.2016.06.011 [10] 俞阳, 林建伟, 詹艳慧, 等. 静止和水动力扰动状态下锆改性沸石添加对河道底泥磷迁移转化的影响 [J]. 环境科学, 2019, 40(3): 1337-1346. YU Y, LIN J W, ZHAN Y H, et al. Effect of zirconium-modified zeolite addition on migration and transformation of phosphorus in river sediments under static and hydrodynamic disturbance conditions [J]. Environmental Science, 2019, 40(3): 1337-1346(in Chinese).
[11] 吴小龙, 林建伟, 张宏华, 等. 物理扰动对锆改性沸石改良底泥磷吸附和移动的影响 [J]. 环境化学, 2019, 38(5): 1119-1127. WU X L, LIN J W, ZHANG H H, et al. Effect of physical disturbance on phosphorus sorption and immobilization onto/in zirconium-modified zeolite-amended sediments [J]. Environmental Chemistry, 2019, 38(5): 1119-1127(in Chinese).
[12] WANG Y, DING S M, WANG D, et al. Static layer: A key to immobilization of phosphorus in sediments amended with lanthanum modified bentonite (Phoslock®) [J]. Chemical Engineering Journal, 2017, 325: 49-58. doi: 10.1016/j.cej.2017.05.039 [13] 李佳, 林建伟, 詹艳慧. 镧改性沸石活性覆盖控制重污染河道底泥溶解性磷酸盐和铵释放研究 [J]. 环境科学, 2013, 34(11): 4266-4274. LI J, LIN J W, ZHAN Y H. Evaluation of in situ capping with lanthanum-modified zeolite to control phosphate and ammonium release from sediments in heavily polluted river [J]. Environmental Science, 2013, 34(11): 4266-4274(in Chinese).
[14] 李佳, 詹艳慧, 林建伟, 等. 镧改性沸石对太湖底泥-水系统中磷的固定作用 [J]. 中国环境科学, 2014, 34(1): 161-169. LI J, ZHAN Y H, LIN J W, et al. Immobilization of phosphorus in Taihu Lake sediment-water systems by lanthanum-modified zeolite [J]. China Environmental Science, 2014, 34(1): 161-169(in Chinese).
[15] LI X D, XIE Q, CHEN S H, et al. Inactivation of phosphorus in the sediment of the Lake Taihu by lanthanum modified zeolite using laboratory studies [J]. Environmental Pollution, 2019, 247: 9-17. doi: 10.1016/j.envpol.2019.01.008 [16] WANG Z, LU S Y, WU D Y, et al. Control of internal phosphorus loading in eutrophic lakes using lanthanum-modified zeolite [J]. Chemical Engineering Journal, 2017, 327: 505-513. doi: 10.1016/j.cej.2017.06.111 [17] LIN J W, ZHAO Y Y, ZHANG Z B, et al. Immobilization of mobile and bioavailable phosphorus in sediments using lanthanum hydroxide and magnetite/lanthanum hydroxide composite as amendments [J]. Science of the Total Environment, 2019, 687: 232-243. doi: 10.1016/j.scitotenv.2019.06.042 [18] 何思琪, 周亚义, 林建伟, 等. 氢氧化镧改良沉积物对水中磷的吸附特征 [J]. 环境化学, 2018, 37(11): 2565-2574. doi: 10.7524/j.issn.0254-6108.2018011104 HE S Q, ZHOU Y Y, LIN J W, et al. Adsorption characteristics of phosphate in water on lanthanum hydroxide-amended sediments [J]. Environmental Chemistry, 2018, 37(11): 2565-2574(in Chinese). doi: 10.7524/j.issn.0254-6108.2018011104
[19] 杨春懿, 詹艳慧, 林建伟, 等. 氢氧化镁对水体内源磷释放的控制作用 [J]. 环境科学, 2020, 41(4): 1700-1708. YANG C Y, ZHAN Y H, LIN J W, et al. Efficiency of magnesium hydroxide capping and amendment to control phosphorus release from sediments [J]. Environmental Science, 2020, 41(4): 1700-1708(in Chinese).
[20] 王欣舒, 吴明松, 刘宇鹤, 等. 单过硫酸氢钾复合盐的消毒研究与应用进展 [J]. 无机盐工业, 2021, 53(4): 32-37. doi: 10.11962/1006-4990.2020-0250 WANG X S, WU M S, LIU Y H, et al. Research and application progress of potassium monopersulfate compound for disinfection [J]. Inorganic Chemicals Industry, 2021, 53(4): 32-37(in Chinese). doi: 10.11962/1006-4990.2020-0250
[21] 唐兴刚, 魏文康, 罗胜军, 等. 过硫酸氢钾复合物在畜牧水产中的应用研究进展 [J]. 中国兽药杂志, 2020, 54(8): 73-79. TANG X G, WEI W K, LUO S J, et al. Advances in research of potassium peroxomonosulfate compound on animal husbandry and aquatic [J]. Chinese Journal of Veterinary Drug, 2020, 54(8): 73-79(in Chinese).
[22] 黄鹏, 魏德东, 赵青, 等. 四种水体修复氧化剂生物安全评估 [J]. 环境生态学, 2021, 3(4): 27-32. HUANG P, WEI D D, ZHAO Q, et al. Biosafety assessment of four water remediation oxidants [J]. Environmental Ecology, 2021, 3(4): 27-32(in Chinese).
[23] 吴俊麟, 林建伟, 詹艳慧, 等. 镁铁层状双金属氢氧化物对磷酸盐的吸附作用及对内源磷释放的控制效果及机制 [J]. 环境科学, 2020, 41(1): 273-283. WU J L, LIN J W, ZHAN Y H, et al. Adsorption of phosphate on Mg/Fe layered double hydroxides(Mg/Fe-LDH)and use of Mg/Fe-LDH as an amendment for controlling phosphorus release from sediments [J]. Environmental Science, 2020, 41(1): 273-283(in Chinese).
[24] TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review [J]. Water Research, 2017, 120: 88-116. doi: 10.1016/j.watres.2017.04.014 [25] LIN J W, WANG H, ZHAN Y H, et al. Evaluation of sediment amendment with zirconium-reacted bentonite to control phosphorus release [J]. Environmental Earth Sciences, 2016, 75(11): 1-17. [26] WANG L, WANG J Y, YAN W, et al. MgFe2O4-biochar based lanthanum alginate beads for advanced phosphate removal [J]. Chemical Engineering Journal, 2020, 387: 123305. doi: 10.1016/j.cej.2019.123305 [27] HAGHSERESHT F, WANG S B, DO D D. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters [J]. Applied Clay Science, 2009, 46(4): 369-375. doi: 10.1016/j.clay.2009.09.009 [28] LIN J W, ZHAO Y Y, ZHAN Y H, et al. Influence of coexisting calcium and magnesium ions on phosphate adsorption onto Hydrous iron oxide [J]. Environmental Science and Pollution Research, 2020, 27(10): 11303-11319. doi: 10.1007/s11356-020-07676-w [29] CHEN H Y, LU C, YANG H M. Lanthanum compounds-modified rectorite composites for highly efficient phosphate removal from wastewater [J]. Applied Clay Science, 2020, 199: 105875. doi: 10.1016/j.clay.2020.105875 [30] LIN J W, HE S Q, WANG X X, et al. Removal of phosphate from aqueous solution by a novel Mg(OH)2/ZrO2 composite: Adsorption behavior and mechanism [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561: 301-314. [31] PAN F, GUO Z R, CAI Y, et al. Cyclical patterns and (im)mobilization mechanisms of phosphorus in sediments from a small creek estuary: Evidence from in situ monthly sampling and indoor experiments [J]. Water Research, 2020, 171: 115479. doi: 10.1016/j.watres.2020.115479 [32] 陈洁, 许海, 詹旭, 等. 湖泊沉积物-水界面磷的迁移转化机制与定量研究方法 [J]. 湖泊科学, 2019, 31(4): 907-918. doi: 10.18307/2019.0416 CHEN J, XU H, ZHAN X, et al. Mechanisms and research methods of phosphorus migration and transformation across sediment-water interface [J]. Journal of Lake Sciences, 2019, 31(4): 907-918(in Chinese). doi: 10.18307/2019.0416
[33] MEIS S, SPEARS B M, MABERLY S C, et al. Sediment amendment with Phoslock® in Clatto Reservoir (Dundee, UK): Investigating changes in sediment elemental composition and phosphorus fractionation [J]. Journal of Environmental Management, 2012, 93(1): 185-193. doi: 10.1016/j.jenvman.2011.09.015 [34] 叶宏萌, 杨浩, 袁旭音, 等. 基于流域沉积物氮磷形态的生态风险评价: 以沙溪流域为例 [J]. 环境化学, 2020, 39(12): 3471-3479. YE H M, YANG H, YUAN X Y, et al. Ecological risk assessment based on nitrogen and phosphorus forms in watershed sediments: A case study of the Shaxi Watershed, Fujian [J]. Environmental Chemistry, 2020, 39(12): 3471-3479(in Chinese).