基于分子印迹技术的表面增强拉曼传感器在环境分析中的应用

李学剑, 杨圆圆, 李冰冰, 李原婷. 基于分子印迹技术的表面增强拉曼传感器在环境分析中的应用[J]. 环境化学, 2020, (10): 2702-2711. doi: 10.7524/j.issn.0254-6108.2020050703
引用本文: 李学剑, 杨圆圆, 李冰冰, 李原婷. 基于分子印迹技术的表面增强拉曼传感器在环境分析中的应用[J]. 环境化学, 2020, (10): 2702-2711. doi: 10.7524/j.issn.0254-6108.2020050703
LI Xuejian, YANG Yuanyuan, LI Bingbing, LI Yuanting. The application of molecular imprinting-based Surface-enhanced Raman sensors in environmental analysis[J]. Environmental Chemistry, 2020, (10): 2702-2711. doi: 10.7524/j.issn.0254-6108.2020050703
Citation: LI Xuejian, YANG Yuanyuan, LI Bingbing, LI Yuanting. The application of molecular imprinting-based Surface-enhanced Raman sensors in environmental analysis[J]. Environmental Chemistry, 2020, (10): 2702-2711. doi: 10.7524/j.issn.0254-6108.2020050703

基于分子印迹技术的表面增强拉曼传感器在环境分析中的应用

    通讯作者: 李原婷, E-mail: liyuanting@sit.edu.cn
  • 基金项目:

    国家自然科学基金(21707092)资助.

The application of molecular imprinting-based Surface-enhanced Raman sensors in environmental analysis

    Corresponding author: LI Yuanting, liyuanting@sit.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21707092).
  • 摘要: 表面增强拉曼光谱(SERS)作为一种新型的无损快速检测技术,灵敏度高,能提供分析物的"指纹"光谱.而分子印迹聚合物(MIP)拥有高的吸附选择性和较大的吸附容量,已经在环境污染物的吸附与分离方面得到了广泛应用.因此,MIP和SERS技术的结合将在环境分析中展现出巨大的潜力和应用前景.本文介绍了常见的MIP-SERS传感器的结构和性能,综述了近五年来基于MIP技术的SERS传感器的构建策略以及在环境分析中的应用,并对其在合成和使用方面存在的问题以及未来的发展方向进行了总结和展望.
  • 加载中
  • [1] 江新泽, 常兴, 李原婷, 等. 传感器在抗生素检测中的研究进展[J]. 环境化学, 2016, 35(12):2491-2500.

    JIANG X Z, CHANG X, LI Y T, et al. Research progress of sensors in antibiotic detection[J]. Environmental Chemistry, 2016, 35(12):2491-2500(in Chinese).

    [2] 程劼, 王培龙, 苏晓鸥. 表面增强拉曼光谱检测二噁英类化合物研究进展[J]. 化学学报, 2019, 77(10):977-983.

    CHENG J, WANG P L, SU X O. Recent progress on the detection of dioxins based on Surface-enhanced Raman spectroscopy[J]. Acta Chimica Sinica, 2019, 77(10):977-983(in Chinese).

    [3] SONG D, YANG R, LONG F, et al. Applications of magnetic nanoparticles in surface-enhanced raman scattering (SERS) detection of environmental pollutants[J]. Journal of Environmental Sciences, 2019, 80:14-34.
    [4] HAYLEIGH K, ROYSTON G, LAUREN E J, et al. SERS Detection of multiple antimicrobial-resistant pathogens using nanosensors[J]. Analytical Chemistry, 2017, 89(23):12666-12673.
    [5] HUANG Z C, ZHANG A M, ZHANG Q, et al. Nanomaterial-based SERS sensing technology for biomedical application[J]. Journal of Materials Chemistry B, 2019,7(24):3755-3774.
    [6] HU X Y, WANG X R, GE Z P, et al. Bimetallic plasmonic Au@Ag nanocuboids for rapid and sensitive detection of phthalate plasticizers with label-free Surface-enhanced Raman spectroscopy[J]. Analyst, 2019, 144(17):3861-3869.
    [7] LI Y T, QU L L, LI D W, et al. Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and Surface-enhanced Raman spectroscopy[J]. Biosensors and Bioelectronics, 2013, 43:94-100.
    [8] JOSEPH J, BEL B. Molecularly imprinted polymers[J]. Chemical Review, 2019, 119:94-119.
    [9] 明魏娜, 王晓艳, 明永飞, 等. 核-壳型分子印迹聚合物的制备与应用[J]. 化学进展, 2016, 28(4):552-563.

    MING W N, WANG X Y, MING Y F, et al. Preparation and applications of core-shell molecularly imprinted polymers[J]. Progress in Chemistry, 2016, 28(4):552-563(in Chinese).

    [10] 谢晓纹, 马晓国, 郭丽慧,等. 分子印迹聚合物用于环境内分泌干扰物的检测与去除[J].化学进展,2019, 31(12):1749-1758.

    XIE X W, MA X G, GUO M H, et al. Molecularly imprinting polymers for detection and removal of environmental endocrine disruptors[J]. Progress in Chemistry, 2019, 31(12):1749-1758(in Chinese).

    [11] 杨钰昆, 王小敏, 方国臻, 等. 基于分子印迹技术的电化学发光分析[J]. 化学进展, 2016, 28(9):1351-1362.

    YANG Y K, WANG X M, FANG G Z, et al. Electrochemiluminescence analysis based on molecular imprinting technique[J]. Progress in Chemistry, 2016, 28(9):1351-1362(in Chinese).

    [12] GUO X T, LI J H, ARABI M, et al. Molecular imprinting-based Surface-enhanced Raman scattering sensors[J]. ACS Sensors, 2020, 5(3):601-619.
    [13] ZHOU J Y, SUJITRAJ S, ZHOU H F, et al. Highly selective detection of L-Phenylalanine by molecularly imprinted polymers coated Au nanoparticles via Surface-enhanced Raman scattering[J]. Talanta, 2020, 211:120745.
    [14] FERREIRA N, MARQUES A, AGUAS H, et al. Label-free nanosensing platform for breast cancer exosome profiling[J]. ACS Sensors, 2019, 4(8):2073-2083.
    [15] GRANGER J H, PORTER M D. The case for human serum as a highly preferable sample matrix for detection of anthrax toxins[J]. ACS Sensors, 2018, 3(11):2303-2310.
    [16] LI H J, WANG X N, WANG Z R, et al. A high-performance SERS-imprinted sensor doped with silver particles of different surface morphologies for selective detection of pyrethroids in rivers[J]. New Journal of Chemistry, 2017, 41(23):14342-14350.
    [17] CARRASCO S, BENITO P E, NAVARRO-VILLOSLADA F, et al. Multibranched gold-mesoporous silica nanoparticles coated with a molecularly imprinted polymer for label-free antibiotic Surface-enhanced Raman scattering analysis[J]. Chemistry of Materials, 2016, 28(21):7947-7954.
    [18] LI Y, WANG Y, WANG M C, et al. A molecularly imprinted nanoprobe incorporating Cu2O@Ag nanoparticles with different morphologies for selective SERS based detection of chlorophenols[J]. Microchimica Acta, 2020, 187(59):1-10.
    [19] KNEIPP K, KNEIPP H, ITZKAN I, et al. Surface-enhanced non-linear Raman scattering at the single-molecule level[J]. Chemical Physics, 1999, 247(1):155-162.
    [20] ZHANG Y, ZHAO S J, HE L L, et al. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization[J]. Trends in Analytical Chemistry, 2017, 90:1-13.
    [21] JIANG Y F, SUN D W, PU H B, et al. Surface-enhanced Raman spectroscopy (SERS):A novel reliable technique for rapid detection of common harmful chemical residues[J]. Trends in Food Science & Technology, 2018,75:10-22.
    [22] WANG Z W, YAN R X, LIAO S W, et al. In situ reduced silver nanoparticles embedded molecularly imprinted reusable sensor for selective and sensitive SERS detection of Bisphenol A[J]. Applied Surface Science, 2018,457:323-331.
    [23] HU R, TANG R, XU J Y, et al. Chemical nanosensors based on molecularly-imprinted polymers doped with silver nanoparticles for the rapid detection of caffeine in wastewater[J]. Analytica Chimica Acta, 2018, 1034:176-183.
    [24] YIN W M, WU L, DING F, et al. Surface-imprinted SiO2@Ag nanoparticles for the selective detection of BPA using Surface-enhanced Raman scattering[J]. Sensors and Actuators B:Chemical, 2018, 258(1):566-573.
    [25] LI H J, WANGX N, WANG Z R, et al. A polydopamine-based molecularly imprinted polymer on nanoparticles of type SiO2@rGO@Ag for the detection of lambda-cyhalothrin via SERS[J]. Microchimica Acta, 2018, 185(193):3-10.
    [26] KANTAROVICH K, TSARFATI I, GHEBER L A, et al. Reading microdots of a molecularly imprinted polymer by Surface-enhanced Raman spectroscopy[J]. Biosensors and Bioelectronics, 2010, 26(2):809-814.
    [27] HOLTHOFF E L, STRATIS-CULLUM D N, HANKUS M E, et al. A nanosensor for TNT detection based on molecularly imprinted polymers and Surface-enhanced Raman scattering[J]. Sensors, 2011, 11(3):2700-2714.
    [28] RISKIN M, BEN-AMRAM Y, TEL-VERED R, et al. Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of Pentaerythritol Tetranitrate, Nitroglycerin, and Ethylene Glycol Dinitrate[J]. Analytical Chemistry, 2011, 83(8):3082-3088.
    [29] YANG L B, MA L A, CHEN G Y, et al. Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate[J]. Chemistry:A European Journal, 2010, 16(42):12683-12693.
    [30] XIE Y F, ZHAO M Y, HU Q, et al. Selective detection of chloramphenicol in milk based on a molecularly imprinted polymer-Surface-enhanced Raman spectroscopic nanosensor[J]. Journal of Raman Spectroscopy, 2017, 48(2):204-210.
    [31] KAMRA T, XU C G, MONTELIUS L, et al. Photoconjugation of molecularly imprinted polymer nanoparticles for Surface-enhanced Raman detection of propranolol[J]. ACS Applied Materials & Interfaces, 2015, 7(49):27479-27485.
    [32] KANTAROVICH K, TSARFATI I, GHEBER L A, et al. Writing droplets of molecularly imprinted polymers by nano fountain pen and detecting their molecular interactions by Surface-enhanced Raman scattering[J]. Analytical Chemistry, 2009, 81(14):5686-5690.
    [33] KAMRA T, ZHOU T C, MONTELIUS L, et al. Implementation of molecularly imprinted polymer beads for Surface- enhanced Raman Detection[J]. Analytical Chemistry, 2015, 87:5056-5061.
    [34] KOSTREWA S, EMGENBROICH M, KLOCKOW D, et al. Surface-enhanced Raman scattering on molecularly imprinted polymers in water[J]. Chemical Physics, 2003, 204(3):481-487.
    [35] LIU Y J, BAO J J, ZHANG L, et al. Ultrasensitive SERS detection of propranolol based on sandwich nanostructure of molecular imprinting polymers[J]. Sensors and Actuators B-Chemical, 2018, 255(1):110-116.
    [36] ZHAO P N, LIU H Y, ZHANG L N, et al. Paper-Based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification[J]. ACS Applied Materials & Interfaces, 2020, 12(7):8845-8854.
    [37] CARBONI D, JIANG Y, MALFATTI L, et al. Selective detection of organophosphate through molecularly imprinted GERS-active hybrid organic-inorganic materials[J]. Journal of Raman Spectroscopy, 2018, 49:189-197.
    [38] LI H J, WANG Y, LI Y, et al. High-sensitive molecularly imprinted sensor with multilayer nanocomposite for 2,6-dichlorophenol detection based on Surface-enhanced Raman scattering[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2019, 228:117784.
    [39] LI Y T, YANG Y Y, SUN Y X, et al. Electrochemical fabrication of reduced MoS2-based portable molecular imprinting nanoprobe for selective SERS determination of theophylline[J]. Microchimica Acta, 2020, 187:203.
    [40] YANG Y Y, LI Y T, LI X J, et al. Controllable in situ fabrication of portable AuNP/mussel-inspired polydopamine molecularly imprinted SERS substrate for selective enrichment and recognition of phthalate plasticizers[J]. Chemical Engineering Journal, 2020, doi:10.1016/j.cej.2020.125179.
    [41] LI H J, WANG Z, WANG X, et al. High-performance composite imprinted sensor based on the Surface-enhanced Raman scattering for selective detection of 2,6-dichlorophenol in water[J]. Journal of Raman Spectroscopy, 2018, 49(2):222-229.
    [42] XUE J Q, LI D W, QU L L, et al. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on Surface-enhanced Raman scattering[J]. Analytica Chimica Acta, 2013, 777:57-62.
    [43] LI H J, WANG X N, WANG Z R, et al. Thermo-responsive molecularly imprinted sensor based on the surface-enhanced Raman scattering for selective detection of R6G in the water. Dalton Transactions, 2017, 46:11282-11290.
    [44] KAREUHANON W, LEE V S, NIMMANPIPUG P, et al. Synthesis of molecularly imprinted polymers for nevirapine by dummy template imprinting approach[J]. Chromatographia, 2009, 70:1531-1537.
    [45] CHEN S N, LI X, ZHAO Y Y, et al. High performance Surface-enhanced Raman scattering via dummy molecular imprinting onto silver microspheres[J]. Chemical Communications, 2014, 50:14331-14333.
    [46] WACKERLIG J, LIEBERZEIT P A. Molecularly imprinted polymer nanoparticles in chemical sensing-Synthesis, characterisation and application[J]. Sensors & Actuators B Chemical, 2015, 207:144-157.
    [47] PANASYUK TL, MIRSKY VM, PILETSKY SA, et al. Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical censors[J]. Analytical Chemistry, 1999, 71:4609-4613.
    [48] SHAHAR T, SICRON T, MANDLER D, et al. Nanosphere molecularly imprinted polymers doped with gold nanoparticles for high selectivity molecular sensors[J]. Nano Research, 2017, 10(3):1056-1063.
    [49] CHEN S N, LI X, HAN S, et al. Synthesis of surface-imprinted Ag nanoplates for detecting organic pollutants in water environments based on Surface-enhanced Raman scattering[J]. RSC Advances, 2015, 5:99914-99919.
    [50] ZHAO, Y, SUN L, XI M, et al. Electrospun TiO2 nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering[J]. ACS Applied Materials & Interfaces, 2014, 6:5759-5767.
    [51] LI H J, WANG Z R, WANG X N, et al. Preparation of a self-cleanable molecularly imprinted sensor based on Surface-enhanced Raman spectroscopy for selective detection of R6G[J]. Analytical and Bioanalytical Chemistry, 2017, 409:4627-4635.
    [52] REN X H, CHESHARI C E, QI J Y, et al. Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A[J]. Microchimica Acta, 2018, 185:242.
    [53] YAN M M, SHE Y X, CAO X L, et al. A molecularly imprinted polymer with integrated gold nanoparticles for Surface-enhanced Raman scattering based detection of the triazine herbicides, prometryn and simetryn[J]. Microchimica Acta, 2019, 186:143.
    [54] ZHAO B W, FENG S L, HU Y X, et al. Rapid determination of atrazine in apple juice using molecularly imprinted polymers coupled with gold nanoparticles-colorimetric/SERS dual chemosensor[J]. Food Chemistry, 2019, 276:366-375.
    [55] WANG M C, WANG Y, QIAO Y, et al. High-sensitive imprintedmembranes based on Surface-enhanced Raman scattering for selective detection of antibiotics in water[J]. Spectrochimica acta. Part A, Molecular and Biomolecular Spectroscopy, 2019, 222:117116.
    [56] ASHLEY J, WU K Y, HANSEN M F, et al. Quantitative detection of trace level Cloxacillin in food samples using magnetic molecularly imprinted polymer extraction and Surface-enhanced Raman spectroscopy nanopillars[J]. Analytical Chemistry, 2017, 89:11484-11490.
  • 加载中
计量
  • 文章访问数:  1958
  • HTML全文浏览数:  1958
  • PDF下载数:  68
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-07

基于分子印迹技术的表面增强拉曼传感器在环境分析中的应用

    通讯作者: 李原婷, E-mail: liyuanting@sit.edu.cn
  • 上海应用技术大学化学与环境工程学院, 上海, 201418
基金项目:

国家自然科学基金(21707092)资助.

摘要: 表面增强拉曼光谱(SERS)作为一种新型的无损快速检测技术,灵敏度高,能提供分析物的"指纹"光谱.而分子印迹聚合物(MIP)拥有高的吸附选择性和较大的吸附容量,已经在环境污染物的吸附与分离方面得到了广泛应用.因此,MIP和SERS技术的结合将在环境分析中展现出巨大的潜力和应用前景.本文介绍了常见的MIP-SERS传感器的结构和性能,综述了近五年来基于MIP技术的SERS传感器的构建策略以及在环境分析中的应用,并对其在合成和使用方面存在的问题以及未来的发展方向进行了总结和展望.

English Abstract

参考文献 (56)

目录

/

返回文章
返回