-
污泥是污水处理的副产物,含水率高,易腐烂,并含有大量的病原菌以及多环芳烃、矿物油和苯并芘等难降解微量有机污染物,处置不当极易对土壤、水体等造成污染[1]。GEP Research报告显示,2017年全球主要经济体累计污泥产量高达1.37亿吨,其中中国占比40%;2018年中国污泥总产量为5665万吨,年增长率为4%[2]。因此,污泥减量化、稳定化与资源化,是我国乃至全世界环境界面临的一个极具挑战性的课题。
厌氧消化工艺因其能耗低、稳定性好、产生富含甲烷的生物能源等优点,被广泛用于污水污泥处理[3]。污泥厌氧消化包括水解、酸化、乙酸化和产甲烷4个阶段,其中水解被普遍认为是厌氧消化的限速步骤[4]。为提高水解速率,众多学者提出了超声[5]、热水解[6]、微波辐射[7]、碱解[8]、酸化[8-9]、臭氧氧化[10]、Fe(Ⅱ)/S2O82− 氧化[11]或多种技术组合等预处理工艺来强化污泥溶胞,加速厌氧消化进程。
在这些预处理方法中,Fe(Ⅱ)/S2O82− 氧化法被发现具有巨大的潜力。过硫酸盐在水中能分解形成具有强氧化性的过硫酸盐阴离子(S2O82−),进而在二价铁[Fe(Ⅱ)]的活化作用下产生强大的硫酸根自由基(SO4−.)[12]。硫酸根自由基具有很高的氧化还原电位,可以迅速转化并降解胞外聚合物,破坏污泥絮凝结构[13],从而促进有机物的水解。微波辐射的作用则主要包括热效应与非热效应,前者通过高温促使胞外聚合物解体,后者通过产生外部电磁场从而引起胞内水分子偶极化及高速旋转进而导致细胞壁的机械性破裂[14],反应迅速,成本低廉。近年来微波与其他预处理工艺相结合的方法引起了众多学者的研究兴趣[15],Zhen等[11]曾对污泥微波-Fe(Ⅱ)/S2O82− 耦合预处理促进污泥脱水进行实验分析,发现其对增强污泥溶裂的效果显著,但在厌氧消化方面尚未有文献进行深入研究。
因此,本研究系统探讨了微波-Fe(Ⅱ)/S2O82− 耦合预处理对污泥溶裂、甲烷转化以及有机物降解的影响,并借助一级动力学模型拟合和解析污泥代谢动态和甲烷转化行为,为污泥预处理与厌氧甲烷转化提供数据和理论支撑。
微波-Fe(Ⅱ)/S2O82−耦合强化污泥溶胞与定向甲烷转化
Enhancement for the rupture of waste activated sludge cells and directional methane conversion based on microwave-Fe(Ⅱ)/S2O82− combined pretreatment
-
摘要: 本研究探讨了微波-Fe(Ⅱ)/S2O82− 耦合预处理对污泥溶裂、甲烷转化以及有机物降解的影响,结果表明,单一微波预处理可促进污泥厌氧消化,而微波-Fe(Ⅱ)/S2O82− 耦合预处理则有利于强化污泥细胞溶裂,缩短厌氧停留时间,提高有机质去除率,处理效果与微波瓦数和氧化剂投加量成正比。其中,微波辐射640 W,Fe(Ⅱ)/S2O82− = 0.8/1.0 mmol·g−1-TS为最佳预处理条件,此时污泥溶解性多糖(soluble polysaccharides,SPS)增溶量较对照组高7.5倍,厌氧产气率仅在4 d即可达到峰值,厌氧停留时间较其他预处理污泥缩短约75.7%,且SPS去除率达到98.6%。一级动力学模型模拟揭示,污泥水解速率与产甲烷性能无必然联系,基质本身的产甲烷潜力则是影响和决定其最终甲烷产量的关键制约因子。能量评估结果进一步表明,尽管耦合预处理未能获得明显的能量输出,但单位干基污泥的处理能耗节约20.1 kWh·kg−1,仅为原来的45% — 60%。Abstract: In this study, the effect of microwave (MW)-Fe(Ⅱ)/S2O82− combined pretreatment on sludge cells rupture, biodegradability and subsequent methane producing potential were investigated. The results demonstrated that single microwave pretreatment could promote the anaerobic digestion of sludge, while the combined process could greatly promote the lysis of sludge cells, shorten the hydraulic retention time, and improve the removal rate of organics. The enhancement effect showed a close correlation with the applied MW power and oxidant dosage. The optimal condition was observed to be MW 640 W and Fe(Ⅱ)/S2O82− 0.8/1.0 mmol·g−1-TS. Under this condition, the solubilization degree of the sludge was 7.5-time higher than the control and the peak of methane production in subsequent anaerobic digestion was obtained after only 4 days, with 75.7% shorter start-up time than other samples. Also, the biodegradation of organic matter, especially soluble polysaccharides, reached the highest of up to 98.6%. The further analysis by fitting with the first-order dynamic model demonstrated that the potential of methane production rather than the hydrolysis rate was necessarily related to methane production. Although a net energy output was not realized even under the optimal pretreatment conditions, the current result can save at least 20.1 kWh of specific energy consumption per kilogram dry sludge, which was only 45%—60% of traditional energy consumption.
-
Key words:
- Sewage sludge /
- anaerobic digestion /
- microwave /
- Fe(Ⅱ)/S2O82− /
- methane production /
- first-order dynamic model
-
表 1 剩余污泥与接种污泥的基本性质
Table 1. Properties of Waste Activated Sludge and Seed Sludge
指标
Indicators剩余污泥
Waste Activated Sludge接种污泥
Seed SludgeTS /(g·L−1) 36.33 ± 0.2 29.30 ± 0.4 VS /(g·L−1) 18.39 ± 1.0 14.92 ± 0.2 pH 7.51 ± 0.0 7.49 ± 0.0 TCOD /(mg·L−1) 15382.78 ± 547.7 18712.18 ± 862.6 SCOD/ (mg·L−1) 618.16 ± 1.7 420.27 ± 1.7 TPN /(mg·L−1) 2536.24 ± 61.7 2555.93 ± 145.2 SPN/ (mg·L−1) 46.97 ± 2.0 37.63 ± 2.2 TPS /(mg·L−1) 1602.32 ± 171.1 1981.31 ± 101.8 SPS /(mg·L−1) 19.02 ± 1.3 13.76 ± 0.9 AN /(mg·L−1) 290.49 ± 36.8 306.26 ± 4.1 注:TS: total solids,总固体;VS:volatile solids,挥发性固体;TCOD:total chemical oxygen demand,总化学需氧量;SCOD:soluble chemical oxygen demand,溶解性化学需氧量;TPN:total protein,总蛋白质;SPN:soluble protein,溶解性蛋白质;TPS:total polysaccharides,总多糖;SPS:soluble polysaccharides,溶解性多糖;AN:ammonia nitrogen,氨氮. 表 2 不同预处理条件下一级动力学模型的估计参数
Table 2. Estimated parameters of first-order kinetic model under different pretreatment conditions
参量
Parameters原泥
Raw sludge320 W 640 W 0/0 0.4/0.5 0.8/1.0 0/0 0.4/0.5 0.8/1.0 Bm/(mL·g−1−VS) 229.43 341.56 114.92 78.24 415.22 124.10 114.00 fd/(mL·g−1−VS) 280.7 408.2 122.6 82.1 437.2 136.4 119.5 khyd/d−1 0.049 0.044 0.120 0.174 0.069 0.106 0.173 R2 — 0.994 0.958 0.919 0.996 0.955 0.918 Adjust R2 0.755 0.994 0.956 0.913 0.996 0.952 0.912 Bp/(mL·g−1−VS) 235.49 329.19 121.18 81.96 402.65 133.69 119.35 Diff./% 2.64 3.62 5.44 4.76 3.03 7.73 4.69 RSS(103) 16.300 0.903 0.597 0.912 0.979 0.057 1.973 rMSPE 11.14 22.74 11.50 6.85 23.11 17.63 9.83 AIC 118.82 72.52 65.91 72.69 73.83 28.33 85.04 注:Bm:测得的最终甲烷产量;Bp:预测的最终甲烷产量;R2:相关系数;Diff.(%):Bm和Bp之差,即Diff.(%) =| Bm - Bp | / Bm×100;RSS:残差平方和;rMSPE:均方根预测误差;AIC:赤池信息准则。其中,rMSPE和AIC是根据El-Mashad等 [41]提出的方法计算的。 表 3 最佳预处理条件的能量平衡(kWh·kg-1-VS)
Table 3. Energy balance under the optimal preconditioning conditions
参数
Parameter320 W-0.8/1.0 mmol·g−1-TS 640 W-0.8/1.0 mmol·g−1-TS 输入能量Energy applied 7.4 14.8 甲烷能量含量Energy content of methane 0.7 1.0 净能量产量Net energy production −6.7 −13.9 -
[1] 董慧峪, 季民. 剩余污泥厌氧消化甲烷生成势与产甲烷菌群多样性的比较研究 [J]. 环境科学, 2014, 35(4): 1421-1427. DONG H Y, JI M. Comparison of methane production potential and methanogenic diversity in anaerobic digestion of waste sludge [J]. Environmental Science, 2014, 35(4): 1421-1427(in Chinese).
[2] 搜狐网, 全球及中国污泥处理处置行业发展研究报告(2018)[EB/OL]. [2019-1-28]. https://www.sohu.com/a/291855302_100117564. Sohu. com. Global and China sludge treatment and disposal industry development research report (2018) [EB/OL]. [2019-1-28]. https://www.sohu.com/a/291855302_100117564 (in Chinese).
[3] YANG Y, ZHANG C Q, HU Z Q. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion [J]. Environmental Science- Processes & Impacts, 2013, 15(1): 39-48. [4] 徐慧敏, 秦卫华, 李中林, 等. 超声联合热碱预处理促进剩余污泥中温厌氧消化研究 [J]. 生态与农村环境学报, 2019, 35(1): 91-97. XU H M, QIN W H, LI Z L, et al. A study on promoting the anaerobic digestion of waste sludge by ultrasonic combined with heat alkali pretreatment [J]. Journal of Ecology and Rural Environment, 2019, 35(1): 91-97(in Chinese).
[5] 张博, 赵益华, 季民, 等. 工业化规模超声波预处理对不同固体浓度污泥厌氧消化性能的影响 [J]. 环境工程学报, 2019, 13(9): 2225-2232. doi: 10.12030/j.cjee.201901003 ZHANG B, ZHAO Y H, JI M, et al. Effect of ultrasonic pretreatment on anaerobic digestion performance of sludge with different solid concentration [J]. Journal of Environmental Engineering, 2019, 13(9): 2225-2232(in Chinese). doi: 10.12030/j.cjee.201901003
[6] LI X, CHEN S S, DONG B, et al. New insight into the effect of thermal hydrolysis on high solid sludge anaerobic digestion: Conversion pathway of volatile sulphur compounds [J]. Chemosphere, 2020, 244: 125466. doi: 10.1016/j.chemosphere.2019.125466 [7] GOKCE KB, TIMOTHY A, EMINE UC, et al. Occurrence and fate of antimicrobial triclocarban and its transformation products in municipal sludge during advanced anaerobic digestion using microwave pretreatment [J]. Science of the Total Environment, 2020, 705: 135862. doi: 10.1016/j.scitotenv.2019.135862 [8] 汪辉, 肖庆聪, 赵阳, 等. 基于不同破解方法的市政污泥厌氧消化产气量优化 [J]. 环境工程学报, 2017, 11(1): 572-577. doi: 10.12030/j.cjee.201508213 WANG H, XIAO Q C, ZHAO Y, et al. Optimization of anaerobic digestion gas production of municipal sludge based on different cracking methods [J]. Journal of Environmental Engineering, 2017, 11(1): 572-577(in Chinese). doi: 10.12030/j.cjee.201508213
[9] MENG J, DUAN H R, LI H J, et al. Free nitrous acid pre-treatment enhances anaerobic digestion of waste activated sludge and rheological properties of digested sludge: A pilot-scale study [J]. Water Research, 2020, 172: 115515. doi: 10.1016/j.watres.2020.115515 [10] CHIAVOLA A, D'AMATO E, BONI M R. Effects of low-dosage ozone pre-treatment on the anaerobic digestion of secondary and mixed sludge [J]. Environmental science and pollution research international, 2019, 26(3-4): 35957-35967. [11] ZHEN G, TAN Y, WU T, et al. Strengthened dewaterability of coke-oven plant oily sludge by altering extracellular organics using Fe(II)-activated persulfate oxidation [J]. Science of the Total Environment, 2019, 688: 1155-1161. doi: 10.1016/j.scitotenv.2019.06.308 [12] PU M J, NIU J F, MARK L, et al. Ferrous metal-organic frameworks with strong electron-donating properties for persulfate activation to effectively degrade aqueous sulfamethoxazole [J]. Chemical Engineering Journal, 2020, 394: 125044. doi: 10.1016/j.cej.2020.125044 [13] ZHEN G Y, LU X Q, NIU J, et al. Inhibitory effects of a shock load of Fe(II)-mediated persulfate oxidation on waste activated sludge anaerobic digestion [J]. Chemical Engineering Journal, 2013, 233: 274-281. doi: 10.1016/j.cej.2013.08.038 [14] ZHEN G Y, LU X Q, KATO H, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives [J]. Renewable and Sustainable Energy Reviews, 2017, 69: 559-577. doi: 10.1016/j.rser.2016.11.187 [15] AMBROSE H W, CHIN C TL, HONG E, et al. Effect of hybrid (microwave-H2O2) feed sludge pretreatment on single and two-stage anaerobic digestion efficiency of real mixed sewage sludge [J]. Process Safety and Environmental Protection, 2020, 136: 194-202. doi: 10.1016/j.psep.2020.01.032 [16] LEE E, JEWEL C, WANG M, et al. Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae [J]. Bioresource Technology, 2017, 228: 9-17. doi: 10.1016/j.biortech.2016.12.072 [17] LIN C Y, LAY C H. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora [J]. International Journal of Hydrogen Energy, 2003, 29(3): 275-281. [18] NICOLETTA K, GEORGIOS F, SAVVAS A, et al. A review of simple to scientific models for anaerobic digestion [J]. Renewable Energy, 2014, 71: 701-714. doi: 10.1016/j.renene.2014.05.055 [19] PITT R E, CROSS T L, PELL A N, et al. Use of in vitro gas production models in ruminal kinetics [J]. Mathematical biosciences, 1999, 159(2): 145-163. doi: 10.1016/S0025-5564(99)00020-6 [20] RAMAHI M A, KESZTHELYI-SZABÓ G, BESZÉDES S. Improving biogas production performance of dairy activated sludge via ultrasound disruption prior to microwave disintegration. 2020, 81(6): 1231-1241. [21] YANG Q, YI J, LUO K, et al. Improving disintegration and acidification of waste activated sludge by combined alkaline and microwave pretreatment [J]. Process Safety and Environmental Protection, 2013, 91(6): 521-526. doi: 10.1016/j.psep.2012.12.003 [22] ESWARI P, KAVITHA S, KALIAPPAN S, et al. Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions [J]. Environmental science and pollution research international, 2016, 23(13): 13467-13479. doi: 10.1007/s11356-016-6543-2 [23] PASSOS F, FERRER I. Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production [J]. Water Research, 2015, 68: 364-373. doi: 10.1016/j.watres.2014.10.015 [24] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1 [25] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017 [26] YIGIT C B, ONUR G A. Critical review for microwave pretreatment of waste-activated sludge before anaerobic digestion [J]. Current Opinion in Environmental Science & Health, 2019, 14: 1-9. [27] 米记茹, 田立平, 亓华, 等. 过硫酸盐活化方法的研究进展[J/OL]. 工业水处理: 1-12[2020-03-26]. http://kns.cnki.net/kcms/detail/12.1087.X.20200228.1147.012.html. MI J R, TIAN L P, YU H, et al. Advances in the study of persulfate activation methods[J/OL]. industrial water treatment: 1-12[2020-03-26]. http://kns.cnki.net/kcms/detail/12.1087.X.20200228.1147.012.html (in Chinese).
[28] LEE M Y, WANG W L, DU Y, et al. Comparison of UV/H 2 O 2 and UV/PS processes for the treatment of reverse osmosis concentrate from municipal wastewater reclamation [J]. Chemical Engineering Journal, 2020, 388: 124260. doi: 10.1016/j.cej.2020.124260 [29] HOLGER V L, JULIA B, SERGEJ N, et al. Degradation of perfluorinated compounds by sulfate radicals – New mechanistic aspects and economical considerations [J]. Water Research, 2018, 129: 509-519. doi: 10.1016/j.watres.2017.10.067 [30] 郭绍东, 王健, 季斌, 谢世伟. 电解活化过一硫酸盐改善污泥过滤及破解效能 [J]. 华中科技大学学报(自然科学版), 2020, 48(4): 7-11. GUO S D, WANG J, JI B, et al. Electrolytic activation of peroxymonosulfate improves sludge filtration and cracking efficiency [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(4): 7-11(in Chinese).
[31] ZHEN G Y, WANG J H, LU X Q, et al. Effective gel-like floc matrix destruction and water seepage for enhancing waste activated sludge dewaterability under hybrid microwave-initiated Fe(II)-persulfate oxidation process [J]. Chemosphere, 2019, 221: 141-153. doi: 10.1016/j.chemosphere.2019.01.037 [32] ZHEN G Y, LU X Q, Takuro Kobayashi, et al. Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation [J]. Chemical Engineering Journal, 2016, 299: 332-341. doi: 10.1016/j.cej.2016.04.118 [33] HAO X D, WEI J, Mark C. M. van Loosdrecht, et al Analysing the mechanisms of sludge digestion enhanced by iron [J]. Water Research, 2017, 117: 58-67. doi: 10.1016/j.watres.2017.03.048 [34] 任宏洋, 彭磊, 王兵, 等. 剩余污泥臭氧化溶胞过程研究 [J]. 安全与环境学报, 2019, 19(4): 1308-1315. REN H Y, PENG L, WANG B, et al. A study on ozonation of dissolved cell in waste sludge [J]. Journal of Safety and Environment, 2019, 19(4): 1308-1315(in Chinese).
[35] YANG G, ZHANG P Y, ZHANG G M, et al. Degradation properties of protein and carbohydrate during sludge anaerobic digestion [J]. Bioresource Technology, 2015, 192: 126-30. doi: 10.1016/j.biortech.2015.05.076 [36] 陈思思, 杨殿海, 庞维海, 等. 污泥中蛋白类物质厌氧转化影响因素及其促进策略研究进展[J/OL]. 化工进展: 1-11[2020-05-02]. https://doi.org/10.16085/j.issn.1000-6613.2019-1147. CHEN S S, YANG D H, PANG W H, et al. Advances in the study Influencing Factors of Anaerobic Transformation of Protein Substances in Sludge[J/OL]. Chemical progress: 1-11[2020-05-02]. https://doi.org/10.16085/j.issn.1000-6613.2019-1147 (in Chinese).
[37] 梁树焜. ClO_2氧化溶胞耦合超声波细胞破碎的污水处理系统污泥减量研究[D]. 广东: 华南理工大学, 2011. LIANG S K. Study on sludge reduction of sewage treatment system with ClO_2 oxidation lysis coupled with ultrasonic cell disruption[D]. Guangdong: South China University of Technology, 2011(in Chinese).
[38] SERRANO A, SILES J A, MARTÍN M A, et al. Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment [J]. Journal of Environmental Management, 2016, 177: 231-9. [39] PHILIP K, IAN R, STEVEN P, et al. High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae [J]. Bioresource technology, 2013, 131: 128-133. doi: 10.1016/j.biortech.2012.12.125 [40] WEI L L, ZHAO Q L, HU K, et al. Extracellular biological organic matters in sewage sludge during mesophilic digestion at reduced hydraulic retention time [J]. Water Research, 2011, 45(3): 1472-1480. doi: 10.1016/j.watres.2010.11.003 [41] EL-MASHAD H M. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae [J]. Bioresource technology, 2013, 132: 305-312. doi: 10.1016/j.biortech.2012.12.183 [42] ZHEN G Y, Lu X Q, LI Y Y, et al. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion [J]. Applied Energy, 2014, 128: 93-102. doi: 10.1016/j.apenergy.2014.04.062 [43] PAN Y, ZHI Z X, ZHEN G Y, et al. Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms [J]. Fuel, 2019, 253: 40-49. doi: 10.1016/j.fuel.2019.04.084 [44] LI Y B, PARK S Y, ZHU J Y. Solid-state anaerobic digestion for methane production from organic waste [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 821-826. doi: 10.1016/j.rser.2010.07.042 [45] 钱靖华, 田宁宁, 余杰, 等. 城镇污水污泥厌氧消化技术及能源消耗 [J]. 给水排水, 2010, 46(S1): 102-104. QIAN J H, TIAN N N, YU J, et al. Anaerobic digestion technology and energy consumption of urban sewage sludge [J]. Water and Wastewater Engineering, 2010, 46(S1): 102-104(in Chinese).