-
随着现代工业的迅速发展,越来越多的有机污染物(例如工业化学品、药品等)被释放在水生环境中[1-3]。然而,大部分有机污染物在水体中具有持久性特点,不易从自然生态系统中去除,给生态系统和人类健康带来严重威胁[4-5]。因此,迫切需要开发更高效的有机污染物降解技术。基于硫酸盐自由基(
${\rm{SO}}_4^{-}\cdot $ )的高级氧化工艺因其能高效、快速降解或矿化水体中难降解有机化合物的特点,近年来被广泛应用于废水的治理[6]。过一硫酸盐(PMS)或过硫酸盐(PS)活化产生的${\rm{SO}}_4^{-}\cdot $ 具有高的氧化还原电位、宽的pH适用范围以及长的半衰期[7]等特点;且与过硫酸盐活化特性相比,PMS中的O—O键更容易被激活,更有利于水中有机污染物降解。PMS的活化方法主要包括热活化[8]、紫外光活化[9]、碳材料活化[10-11]和过渡金属活化[12-13]等。热活化、紫外光活化方式反应条件苛刻,能耗高。过渡金属活化存在金属离子容易浸出、容易造成二次污染等问题。在碳基材料中,生物炭由于其制备方便、价格低廉、比表面积大、富含官能团、热稳定性和化学稳定性高等优点,在有机污染物消除方面得到广泛的研究[14-15]。然而,材料难回收、易造成二次污染、污染物降解不彻底等问题限制了生物炭的应用。将生物炭与磁性介质结合制备磁性生物炭,赋予生物炭磁响应特性,是目前的研究热点[16-17]。Wang等[18]以松木絮为原料制备了磁性生物炭,并用于吸附废水中的Hg2+,生物炭上负载的γ-F2O3有助于吸附材料从水中快速分离。Sewu等[19]研究了两种不同的磁性前躯体(α-FeOOH和FeCl3)对杉木生物炭磁响应特性的影响。研究表明,前者具有较高的磁饱和度、铁磁化性和可回收率。
同时,为了进一步提高污染物的去除效率,目前不少研究者尝试采用磁性生物炭对过一硫酸盐进行活化,发现磁性生物炭对PMS具有较强的活化能力及应用前景[20-22]。鉴于此,本文综述了磁性生物炭的制备方法、理化性质及其作为PMS激活剂在有机污染物降解方面的应用。从自由基途径和非自由基途径分析了磁性生物炭活化PMS的机理,同时提出磁性生物炭在活化PMS方面有待深入研究的问题,并对未来的研究前景进行了展望。
磁性生物炭的制备及其活化过一硫酸盐的研究进展
Research progress on preparation and peroxymonosulfate activation of magnetic biochar
-
摘要: 硫酸根自由基高级氧化技术因其具有高效、快速降解污染物的特点,近年来在水体中新兴有机污染物去除方面受到广泛关注。同时,磁性生物炭凭借其比表面积大、富含官能团和可磁性分离的特性有望成为应用于过一硫酸盐(PMS)活化的新生催化剂。本文综述了磁性生物炭复合材料常用的制备方法及其在形貌、比表面积和官能团方面的理化性质,着重介绍了磁性生物炭在活化PMS降解有机污染物方面的应用,探讨了磁性生物炭活化PMS的自由基和非自由基机理。最后,对磁性生物炭活化PMS遇到的问题及发展趋势进行了探讨。Abstract: In recent years, utilizing sulfate radical-based advanced oxidation processes to remove emerging organic pollutants in water has received widespread attention due to their high degradation efficiency toward pollutants. Meanwhile, magnetic biochar has been emerged as promising catalysts to activate peroxymonosulfate (PMS) because of its large surface area, abundant functional groups and good recyclable feature. The preparation methods and physicochemical properties (including morphology, specific surface area and functional group) of magnetic biochar were introduced in this study. Moreover, the applications of magnetic biochar for PMS activation were investigated in detail. The mechanisms including radicals and non-radical pathway were also discussed. Finally, the problems and development trend of magnetic biochar for PMS activation in the field of environmental catalysis were pointed out.
-
Key words:
- magnetic biochar /
- peroxymonosulfate /
- preparation /
- organic pollutant
-
表 1 磁性生物炭制备方法的优缺点及磁性物质存在形式
Table 1. Advantages and disadvantages of methods for preparing magnetic biochar
制备方法
Preparation method优点
Advantage缺点
Disadvantage磁性物质
Magnetic substances浸渍热解法 赋磁与热解一步完成,工艺简单 活性组分容易流失 钴、Fe2O3、铁氧体、Fe3O4 液相沉淀法 反应过程简单,成本低 产品分散性差,容易团聚 Fe3O4、γ-Fe2O3 水热/溶剂热合成法 无需烧结,粒子纯度高、分散性好 设备要求高、技术难度大 Fe3O4 液相还原法 原理简单,经济高效 操作复杂,推广难度较大 Fe0 溶胶-凝胶法 粒子结晶度高、分散性好 样品比表面积较小 铁氧体 高能球磨法 晶粒细化,颗粒分布均匀 设备要求较高,能耗大 Fe3O4、Fe0 表 2 不同磁性生物炭的特征及应用
Table 2. The characterization and application of different magnetic biochar
磁性生物炭
Magnetic biochar制备方法
Preparation method原材料
Material比表面积/
(m2·g−1)
SBET孔径/
nm
Dp孔容/
(cm3·g−1)
Vp降解率/%
Degradation参考文献
ReferencesCo-GMC-900 浸渍热解法 山羊粪肥、
Co(NO3)2·6H2O305.1 3.8 0.255 环丙沙星(20 mg·L−1):25.2% [23] Fe0.5−N-C 浸渍热解法 木屑、FeCl3·6H2O、双氰胺 215.25 — — 双酚A(10 mg·L−1):97% [24] Fe-BC-450 液相沉淀法 小麦秸秆、FeCl3、KOH、NaOH 152.24 7.12 0.13 Cd2+: 87.7% [25] Fe-SSBC 水热法 含 FeSO4活性污泥 114.57 32 0. 99 Cd2+ (8 mg·L−1):100%
Pb2+ (70 mg·L−1):100%[26] Co-Fe/SiO2 LC 溶剂热法 铁污泥、乙二醇、CoCl2、醋酸钠 145.9 3.2 0.116 环丙沙星(10 mg·L−1):98% [27] Fe-CB600 液相还原法 玉米棒、FeSO4·7H2O、NaBH4 22 3.73 0.205 三氯乙烯(0.1 mmol·L−1): 100% [28] BC/FL 溶胶凝胶法 玉米秸秆、硝酸铁、硝酸镧、柠檬酸 34.67 7.82 0.041 亚甲基蓝(30 mg·L−1): 92.3% [29] Biochar/Fe3O4 高能球磨法 椰子壳、Fe3O4 365 1.1 0.54 四环素: 99% [30] Fe3O4/MC800 高能球磨+热解法 水杨树、K2FeO4 350 1.2、2.5 0.28 对羟基苯甲酸(10 mg·L−1):
100%[21] -
[1] SHARMA J, MISHRA I M, DIONYSIOU D D, et al. Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway [J]. Chemical Engineering Journal, 2015, 276: 193-204. doi: 10.1016/j.cej.2015.04.021 [2] 徐萍, 王娜, 文志潘, 等. 新型纳米CeO2催化类Fenton降解盐酸四环素 [J]. 环境化学, 2020, 39(3): 601-609. doi: 10.7524/j.issn.0254-6108.2019103003 XU P, WANG N, WEN Z P, et al. Degradation of tetracycline hydrochloride via a heterogeneous Fenton-like catalyzed by nano-CeO2 [J]. Environmental Chemistry, 2020, 39(3): 601-609(in Chinese). doi: 10.7524/j.issn.0254-6108.2019103003
[3] LI K S, LU X Y, ZHANG Y, et al. Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants [J]. Environmental Research, 2020, 185: 109409. doi: 10.1016/j.envres.2020.109409 [4] PETRIE B, BARDEN R, KASPRZYK-HORDERN B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring [J]. Water Research, 2015, 72: 3-27. doi: 10.1016/j.watres.2014.08.053 [5] LI Y, XIA Y, LIU K L, et al. Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: Nanointerface and carbon sheath synergistic effect [J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25494-25502. [6] XIAO R Y, LUO Z H, WEI Z S, et al. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies [J]. Current Opinion in Chemical Engineering, 2018, 19: 51-58. doi: 10.1016/j.coche.2017.12.005 [7] LIN K Y A, ZHANG Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst [J]. Chemical Engineering Journal, 2017, 313: 1320-1327. doi: 10.1016/j.cej.2016.11.025 [8] LIU Y X, WANG Y, WANG Q, et al. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) [J]. Chemosphere, 2018, 190: 431-441. doi: 10.1016/j.chemosphere.2017.10.020 [9] SHAD A, CHEN J, QU R J, et al. Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: Kinetics, degradation products, and reaction pathways [J]. Chemical Engineering Journal, 2020, 398: 125357. doi: 10.1016/j.cej.2020.125357 [10] ZHAO Q X, MAO Q M, ZHOU Y Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications [J]. Chemosphere, 2017, 189: 224-238. doi: 10.1016/j.chemosphere.2017.09.042 [11] OUYANG D, CHEN Y, YAN J C, et al. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1, 4-dioxane: Important role of biochar defect structures [J]. Chemical Engineering Journal, 2019, 370: 614-624. doi: 10.1016/j.cej.2019.03.235 [12] LI J, XU M J, YAO G, et al. Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: Kinetic, degradation intermediates, and toxicity evaluation [J]. Chemical Engineering Journal, 2018, 348: 1012-1024. doi: 10.1016/j.cej.2018.05.032 [13] XU H D, JIANG N, WANG D, et al. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways [J]. Applied Catalysis B: Environmental, 2020, 263: 118350. doi: 10.1016/j.apcatb.2019.118350 [14] ZHU S S, HUANG X C, MA F, et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms [J]. Environmental Science & Technology, 2018, 52(15): 8649-8658. [15] HOSLETT J, GHAZAL H, KATSOU E, et al. The removal of tetracycline from water using biochar produced from agricultural discarded material [J]. Science of the Total Environment, 2021, 751: 141755. doi: 10.1016/j.scitotenv.2020.141755 [16] YIN Z B, XU S, LIU S, et al. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium [J]. Bioresource Technology, 2020, 300: 122680. doi: 10.1016/j.biortech.2019.122680 [17] WANG H, ZHAO W, CHEN Y N, et al. Nickel aluminum layered double oxides modified magnetic biochar from waste corncob for efficient removal of acridine orange [J]. Bioresource Technology, 2020, 315: 123834. doi: 10.1016/j.biortech.2020.123834 [18] WANG H B, LIU Y, IFTHIKAR J, et al. Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment [J]. Bioresource Technology, 2018, 256: 269-276. doi: 10.1016/j.biortech.2018.02.019 [19] SEWU D D, TRAN H N, OHEMENG-BOAHEN G, et al. Facile magnetic biochar production route with new goethite nanoparticle precursor [J]. Science of the Total Environment, 2020, 717: 137091. doi: 10.1016/j.scitotenv.2020.137091 [20] LI K, MA S L, XU S J, et al. The mechanism changes during bisphenol A degradation in three iron functionalized biochar/peroxymonosulfate systems: The crucial roles of iron contents and graphitized carbon layers [J]. Journal of Hazardous Materials, 2021, 404: 124145. doi: 10.1016/j.jhazmat.2020.124145 [21] FU H C, ZHAO P, XU S J, et al. Fabrication of Fe3O4 and graphitized porous biochar composites for activating peroxymonosulfate to degrade p-hydroxybenzoic acid: Insights on the mechanism [J]. Chemical Engineering Journal, 2019, 375: 121980. doi: 10.1016/j.cej.2019.121980 [22] LI Y, MA S L, XU S J, et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4 [J]. Chemical Engineering Journal, 2020, 387: 124094. doi: 10.1016/j.cej.2020.124094 [23] LUO J M, BO S F, QIN Y N, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation [J]. Chemical Engineering Journal, 2020, 395: 125063. doi: 10.1016/j.cej.2020.125063 [24] XU L, FU B R, SUN Y, et al. Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application [J]. Chemical Engineering Journal, 2020, 400: 125870. doi: 10.1016/j.cej.2020.125870 [25] 崔志文, 任艳芳, 王伟, 等. 碱和磁复合改性小麦秸秆生物炭对水体中镉的吸附特性及机制 [J]. 环境科学, 2020, 41(7): 3315-3325. CUI Z W, REN Y F, WANG W, et al. Adsorption characteristics and mechanism of cadmium in water by alkali and magnetic composite modified wheat straw biochar [J]. Environmental Science, 2020, 41(7): 3315-3325(in Chinese).
[26] 袁健, 钱雅洁, 薛罡, 等. 活性污泥水热碳化法制备磁性炭及对水体Cd2+及Pb2+的去除 [J]. 环境工程, 2020, 38(2): 55-62. YUAN J, QIAN Y J, XUE G, et al. Removal of cadmium and lead in water by magnetic carbon prepared from activated sludge with hydrothermal carbonization [J]. Environmental Engineering, 2020, 38(2): 55-62(in Chinese).
[27] ZHU S J, XU Y P, ZHU Z G, et al. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation [J]. Chemical Engineering Journal, 2020, 384: 123298. doi: 10.1016/j.cej.2019.123298 [28] LI Z, SUN Y Q, YANG Y, et al. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater [J]. Journal of Hazardous Materials, 2020, 383: 121240. doi: 10.1016/j.jhazmat.2019.121240 [29] 李玉梅, 王畅, 张连科, 等. 生物炭/铁酸镧磁性复合材料的制备及对亚甲基蓝的吸附性能 [J]. 环境污染与防治, 2020, 42(7): 826-832. LI Y M, WANG C, ZHANG L K, et al. Preparation of biochar/LaFeO3 magnetic composite material and adsorption properties for methylene blue [J]. Environmental Pollution & Control, 2020, 42(7): 826-832(in Chinese).
[30] SHAN D N, DENG S B, ZHAO T N, et al. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling [J]. Journal of Hazardous Materials, 2016, 305: 156-163. doi: 10.1016/j.jhazmat.2015.11.047 [31] WANG S S, ZHAO M Y, ZHOU M, et al. Biomass facilitated phase transformation of natural hematite at high temperatures and sorption of Cd2+ and Cu2+ [J]. Environment International, 2019, 124: 473-481. doi: 10.1016/j.envint.2019.01.004 [32] 吴鸿伟, 冯启言, 杨虹, 等. 改性生物炭负载纳米零价铁去除水体中头孢噻肟 [J]. 环境科学学报, 2017, 37(7): 2691-2698. WU H W, FENG Q Y, YANG H, et al. Nanoscale zero valent iron stabilized on modified biochar to remove cefotaxime from aqueous solutions [J]. Acta Scientiae Circumstantiae, 2017, 37(7): 2691-2698(in Chinese).
[33] 吴明山, 马建锋, 杨淑敏, 等. 磁性生物炭复合材料研究进展 [J]. 功能材料, 2016, 47(7): 7028-7033. doi: 10.3969/j.issn.1001-9731.2016.07.006 WU M S, MA J F, YANG S M, et al. Progress of the magnetic biochar composite materials [J]. Journal of Functional Materials, 2016, 47(7): 7028-7033(in Chinese). doi: 10.3969/j.issn.1001-9731.2016.07.006
[34] YI Y Q, TU G Q, ZHAO D Y, et al. Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor [J]. Chemical Engineering Journal, 2019, 360: 212-220. doi: 10.1016/j.cej.2018.11.205 [35] WANG K, SUN Y B, TANG J C, et al. Aqueous Cr(VI) removal by a novel ball milled Fe0-biochar composite: Role of biochar electron transfer capacity under high pyrolysis temperature [J]. Chemosphere, 2020, 241: 125044. doi: 10.1016/j.chemosphere.2019.125044 [36] HEO J, YOON Y, LEE G, et al. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4-biochar composite [J]. Bioresource Technology, 2019, 281: 179-187. doi: 10.1016/j.biortech.2019.02.091 [37] ZHANG Y T, LIU N, YANG Y D, et al. Novel carbothermal synthesis of Fe, N co-doped oak wood biochar (Fe/N-OB) for fast and effective Cr(VI) removal [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600: 124926. doi: 10.1016/j.colsurfa.2020.124926 [38] ZHANG C, LU J, WU J. One-step green preparation of magnetic seaweed biochar/sulfidated Fe0 composite with strengthen adsorptive removal of tetrabromobisphenol A through in situ reduction [J]. Bioresource Technology, 2020, 307: 123170. doi: 10.1016/j.biortech.2020.123170 [39] BOMBUWALA DEWAGE N, LIYANAGE A S, PITTMAN C U Jr, et al. Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar [J]. Bioresource Technology, 2018, 263: 258-265. doi: 10.1016/j.biortech.2018.05.001 [40] ZHONG D L, ZHANG Y R, WANG L L, et al. Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: Key roles of Fe3O4 and persistent free radicals [J]. Environmental Pollution, 2018, 243: 1302-1309. doi: 10.1016/j.envpol.2018.08.093 [41] ZHANG L K, GUO J Y, HUANG X M, et al. Functionalized biochar-supported magnetic MnFe2O4 nanocomposite for the removal of Pb(ii) and Cd(ii) [J]. RSC Advances, 2019, 9(1): 365-376. doi: 10.1039/C8RA09061K [42] LIANG S, SHI S Q, ZHANG H H, et al. One-pot solvothermal synthesis of magnetic biochar from waste biomass: Formation mechanism and efficient adsorption of Cr(VI) in an aqueous solution [J]. Science of the Total Environment, 2019, 695: 133886. doi: 10.1016/j.scitotenv.2019.133886 [43] YIN Z H, LIU Y G, LIU S B, et al. Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper [J]. Science of the Total Environment, 2018, 639: 1530-1542. doi: 10.1016/j.scitotenv.2018.05.130 [44] ZHU Y, YI B J, HU H Y, et al. The relationship of structure and organic matter adsorption characteristics by magnetic cattle manure biochar prepared at different pyrolysis temperatures [J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104112. doi: 10.1016/j.jece.2020.104112 [45] YI Y Q, TU G Q, ERIC TSANG P, et al. Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar [J]. Chemical Engineering Journal, 2020, 380: 122518. doi: 10.1016/j.cej.2019.122518 [46] IFTHIKAR J, WANG J, WANG Q L, et al. Highly efficient lead distribution by magnetic sewage sludge biochar: Sorption mechanisms and bench applications [J]. Bioresource Technology, 2017, 238: 399-406. doi: 10.1016/j.biortech.2017.03.133 [47] DAI X H, FAN H X, YI C Y, et al. Solvent-free synthesis of a 2D biochar stabilized nanoscale zerovalent iron composite for the oxidative degradation of organic pollutants [J]. Journal of Materials Chemistry A, 2019, 7(12): 6849-6858. doi: 10.1039/C8TA11661J [48] YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene [J]. Bioresource Technology, 2015, 175: 269-274. doi: 10.1016/j.biortech.2014.10.103 [49] ZHANG H, XUE G, CHEN H, et al. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment [J]. Chemosphere, 2018, 191: 64-71. doi: 10.1016/j.chemosphere.2017.10.026 [50] RONG X, XIE M, KONG L S, et al. The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation [J]. Chemical Engineering Journal, 2019, 372: 294-303. doi: 10.1016/j.cej.2019.04.135 [51] HUANG Z Y, WANG T L, SHEN M X, et al. Coagulation treatment of swine wastewater by the method of in situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst [J]. Chemical Engineering Journal, 2019, 369: 784-792. doi: 10.1016/j.cej.2019.03.136 [52] FU H C, MA S L, ZHAO P, et al. Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism [J]. Chemical Engineering Journal, 2019, 360: 157-170. doi: 10.1016/j.cej.2018.11.207 [53] YANG M T, DU Y C, TONG W C, et al. Cobalt-impregnated biochar produced from CO2-mediated pyrolysis of Co/lignin as an enhanced catalyst for activating peroxymonosulfate to degrade acetaminophen [J]. Chemosphere, 2019, 226: 924-933. doi: 10.1016/j.chemosphere.2019.04.004 [54] ZHANG T, LI C Y, SUN X T, et al. Iron nanoparticles encapsulated within nitrogen and sulfur co-doped magnetic porous carbon as an efficient peroxymonosulfate activator to degrade 1-naphthol [J]. Science of the Total Environment, 2020, 739: 139896. doi: 10.1016/j.scitotenv.2020.139896 [55] LI Z, SUN Y Q, YANG Y, et al. Comparing biochar-and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway [J]. Environmental Research, 2020, 183: 109156. doi: 10.1016/j.envres.2020.109156 [56] JIANG S F, LING L L, CHEN W J, et al. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors [J]. Chemical Engineering Journal, 2019, 359: 572-583. doi: 10.1016/j.cej.2018.11.124 [57] GAN L, ZHONG Q, GENG A B, et al. Cellulose derived carbon nanofiber: A promising biochar support to enhance the catalytic performance of CoFe2O4 in activating peroxymonosulfate for recycled dimethyl phthalate degradation [J]. Science of the Total Environment, 2019, 694: 133705. doi: 10.1016/j.scitotenv.2019.133705 [58] WAN Z H, SUN Y Q, TSANG D C W, et al. Sustainable impact of tartaric acid as electron shuttle on hierarchical iron-incorporated biochar [J]. Chemical Engineering Journal, 2020, 395: 125138. doi: 10.1016/j.cej.2020.125138 [59] LIU C, CHEN L W, DING D H, et al. From rice straw to magnetically recoverable nitrogen doped biochar: Efficient activation of peroxymonosulfate for the degradation of metolachlor [J]. Applied Catalysis B: Environmental, 2019, 254: 312-320. doi: 10.1016/j.apcatb.2019.05.014 [60] YANG Q, MA Y H, CHEN F, et al. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water [J]. Chemical Engineering Journal, 2019, 378: 122149. doi: 10.1016/j.cej.2019.122149 [61] SUN H W, PENG X X, ZHANG S P, et al. Activation of peroxymonosulfate by nitrogen-functionalized sludge carbon for efficient degradation of organic pollutants in water [J]. Bioresource Technology, 2017, 241: 244-251. doi: 10.1016/j.biortech.2017.05.102 [62] HUANG B C, JIANG J, HUANG G X, et al. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate [J]. Journal of Materials Chemistry A, 2018, 6(19): 8978-8985. doi: 10.1039/C8TA02282H [63] WANG J, KOU L D, ZHAO L, et al. One-pot fabrication of sludge-derived magnetic Fe, N-codoped carbon catalysts for peroxymonosulfate-induced elimination of phenolic contaminants [J]. Chemosphere, 2020, 248: 126076. doi: 10.1016/j.chemosphere.2020.126076