-
PM2.5是我国许多城市除臭氧外的首要污染物,金属元素浓度在其中占比为5%—10%[1-2]。有研究表明[3],PM2.5粒径小,更利于金属元素的富集,且其可不经过滤直接进人体肺部,增加了对人体健康危害的风险[4]。不同金属元素对人体健康危害不同[5-6],如长时间暴露在一定浓度的Pb环境中,会导致先天畸形和神经系统病变,导致新生儿的运动和认知能力障碍;As中毒会损伤皮肤和指甲;过量的Cd、Ni暴露会诱发呼吸系统疾病。2017年国际癌症研究机构(IARC)公布的致癌物清单中,将Cr、Cd、As、Co、Ni等重金属的化合物列为致癌物。我国《环境空气质量标准》(GB 3095—2012)对环境空气中Pb(500 ng·m−3)、Cd(5 ng·m−3)、Hg(50 ng·m−3)、As(6 ng·m−3)和Cr6+(0.025 ng·m−3)的浓度进行了限定[7]。国内外学者对京津冀[8-9]、东南沿海[10-11]等城市PM2.5中金属元素的污染水平、来源解析开展了大量的研究工作,并在重金属污染水平、分布特征、化学形态等方面的研究积累了较多的科研成果[12-14]。
攀枝花市是长江上游最大的资源型矿业城市,也是我国典型的工业城市之一,全市以矿业开发为基础。对于攀枝花市环境污染的研究主要集中在土壤污染[15]、大气降尘[16]等方面,而对于环境空气PM2.5中金属元素浓度分布及健康风险评估研究报道相对较少。自2017年末以来,随着煤炭、金属等工业产品的价格回暖,攀枝花市相关行业生产量持续增长,导致污染物排放量逐步增大[17],2018年攀枝花市钢铁行业PM2.5排放量共1401.79×103 t,占全市总排放量11%[18]。因此,对于加强攀枝花市PM2.5中金属元素浓度、来源解析及重金属潜在健康风险评价等方面的研究具有重要的意义。 为了解攀枝花市PM2.5中不同金属元素质量浓度及来源,本研究于2019年7月、10月在攀枝花市5个环境受体点位采用离线采样的方法采集150个PM2.5颗粒物样品,对样品中的Ti、V、Cr、Mn、Ni、Cu、Zn、As、Pb、Cd、Ba、Fe、Al共13种元素质量浓度进行了测试,并对其来源进行了分析,同时计算了Ni、Cr、As、Cd、Mn、Cu、Zn、V、Pb共9种有毒重金属元素对不同人群的健康影响,以期为攀枝花市PM2.5中金属元素的污染防治措施和政策的制定提供相关建议和科学依据。
攀枝花市PM2.5中金属元素污染特征及健康风险评估
Pollution characteristic and health risk assessment of metal elements in PM2.5 of Panzhihua City
-
摘要: 为研究西南典型矿业城市——攀枝花市大气细颗粒物(PM2.5)中金属元素来源及健康风险,于2019年7月、10月在攀枝花市5个环境受体点位采集了150个PM2.5样品,并对PM2.5中Ti、V、Cr、Mn、Ni、Cu、Zn、As、Pb、Cd、Ba、Fe、Al共13种金属元素的质量浓度进行了测试,利用因子分析和健康风险模型分别对金属元素的来源及潜在健康风险进行了探讨。结果表明,监测期间,攀枝花市ρ(PM2.5)均值为33.0 μg·m−3,低于《环境空气质量标准》(GB 3095—2012)一级标准(35 μg·m−3)。所测金属元素在PM2.5中占比在4%—12%之间,浓度较高的Fe、Al、Zn、Ti、Pb等5种元素质量浓度均值分别为1259.8、288.0、130.6、129.2、82.4 ng·m−3,其余元素质量浓度大小顺序分别为Mn(34.8 ng·m−3)>V(24.3 ng·m−3)>Cu(18.0 ng·m−3)>Ni(13.5 ng·m−3)>As(7.2 ng·m−3)>Ba(6.9 ng·m−3)>Cr(5.1 ng·m−3)>Cd(1.2 ng·m−3)。与国内其它矿业城市相比,Fe、Ti、V等3种金属元素的质量浓度处于较高水平,其余元素相差不明显。源解析结果表明,矿山开采和土壤扬尘、钢铁、交通污染、燃煤是攀枝花市PM2.5中金属元素的主要来源。对Ni、Cr、As、Cd、Mn、Cu、Zn、V、Pb等9种有毒重金属元素进行健康风险评估,结果表明,Mn对儿童产生非致癌风险,风险值为1.58,其余有毒重金属元素的非致癌风险值均小于1,健康影响较小,风险值大小依次为Mn、Cr、As、Pb、V、Cd、Ni、Cu、Zn。Cr对人体有致癌健康风险,As、Ni、Cd致癌风险均在可接受范围(10−6—10−4)之内。Abstract: To evaluate the sources and health risks of metal elements in PM2.5 in Panzhihua, which is the typical mining city in southwest China, 150 PM2.5 samples were collected at five sites from Panzhihua in July and October 2019 and thirteen elements including Ti, V, Cr, Mn, Ni, Cu, Zn, As, Pb, Cd, Ba, Fe, Al were analyzed. The factor analysis and health risk assessment model were used to explore potential sources and health risks. The results showed: The daily average mass concentration of ρ(PM2.5) was 33.0 μg·m−3, which is lower than the primary standard (35 μg·m−3) of Chinese National Ambient Air Quality Standards (GB 3095−2012), during the monitoring period. The mass concentration of the thirteen metal elements accounted for 4%—12% of ρ(PM2.5). The mass concentrations of Fe, Al, Zn, Ti, Pb were 1259.8, 288.0, 130.6, 129.2, 82.4 ng·m−3, respectively, and other elements concentration decreased as Mn (34.8 ng·m−3)>V (24.3 ng·m−3)>Cu(18.0 ng·m−3)>Ni (13.5 ng·m−3)>As(7.2 ng·m−3)>Ba(6.9 ng·m−3)>Cr(5.1 ng·m−3)>Cd (1.2 ng·m−3). Comparing with other mining cities in China, the mass concentrations of Fe, Ti, V metal elements were at a high level, and the mass concentrations of other elements were not significant difference from others. The factor analysis implied that the main sources of metal elements were mining and dust sources, steel source, traffic pollution, coal combustion in Panzhihua City. The results of health risk assessment showed: Mn was found to cause highly non-carcinogenic risk to children which value was 1.58, the non-carcinogenic risk values of other toxic heavy metals were all less than 1, and the health impact was relatively small. The risk values decreasing as Mn, Cr, As, Pb, V, Cd, Ni, Cu, Zn. Cr was found to be with carcinogenic risk, the carcinogenic risks of As, Ni, Cd were within the threshold value (10−6—10−4), indicating relatively small impacts.
-
Key words:
- metal elements /
- source apportionment /
- health risk assessment /
- Panzhihua City
-
表 1 PM2.5、无机元素分析方法及仪器
Table 1. PM2.5, Elements analysis methods and instruments
测试项目
Project分析方法
Method测试仪器及型号
Instrument模式
Mode内标
Internal standardPM2.5 《环境空气PM10和PM2.5的测定-重量法》
(HJ 618-2011)百万分之一天平
Sartorius WZA26-NC— — Ti、V、Cr、Mn、Ni、Cu、Zn、As、Pb、Cd、Ba 《空气和废气 颗粒物中铅等金属元素的测定
电感耦合等离子体质谱法》(HJ 657-2013)PerkinElmer NexION
2000 ICP-MSHe碰撞模式 Sc、Ge O2反应模式 Y 标准模式 In Fe、Al 《空气和废气 颗粒物中金属元素的测定 电感耦合等离子体发射光谱法》(HJ 777-2015) PerkinElmer Optima
8000 ICP-OES— — 表 2 呼吸途径的健康风险评价参数
Table 2. Parameters for health risk assessment through inhalation pathway
参数
Parameters物理意义
Name儿童取值
Value of children成人取值(以男性计)
Value of adult(male)老年人(以男性计)
Value of elderly(male)单位
UnitC 重金属质量浓度 95%UCL 95%UCL 95%UCL mg·m−3 EF 年暴露频率 365 365 365 d·a−1 ED 暴露年限 18 18—72.4 72.4 a AT 平均暴露时间 365×ED(非致癌作用)、365×72.4(致癌作用) d BW 平均体重 15 67.3 59.7 kg InhR 呼吸速率 8.6 16.6 11.53 m3·d−1 95%UCL:平均值的95%置信上限. 95%UCL: 95% confidence interval for mean. 表 3 攀枝花市PM2.5中金属元素浓度与国内其它城市对比(ng·m−3)
Table 3. Comparison of metal elements concentration in PM2.5 of Panzhihua City with other cities in China(ng·m−3)
地区 Region Fe Al Ti V Cr Mn Ni Cu Zn As Cd Ba Pb 本研究 1259.8 288.0 129.2 24.3 5.1 34.8 13.5 18.0 130.6 7.2 1.2 6.9 82.4 苏州[30] 511 — 15 5 7 36 6 26 266 3 3 41 94 鞍山[31] 984.5 819.0 — 6.7 14.2 — 9.7 28.8 464.8 37.9 1.9 — 164.3 常州[32] 595.4 296.4 10.0 4.5 5.0 35.6 4.9 33.4 448.4 7.4 1.3 — 82.8 邯郸[33] — — 30 5 10 100 — 30 400 30 — 20 300 成都[34] 366.2 300 36.8 1.1 5.7 22.6 11.5 27.6 250.9 76.1 2.4 — 106.5 “—”,未监测 not measured. 表 4 攀枝花市PM2.5中 9 种重金属元素的健康风险评估结果
Table 4. Results of health risk assessment of heavy metal elements in PM2.5 of Panzhihua City
金属元素
(Elements)ADD儿童
(ADD children)ADD成人
(ADD adults)LADD RfD SF ICLR HQ儿童
(HQ children)HQ成人
(HQ adults)HQ老年人
(HQ older)Ni 1.13×10−5 4.88×10−6 7.70×10−6 2.0×10−2 8.4×10−1 6.47×10−6 5.67×10−4 2.44×10−4 1.91×10−4 Cr 3.48×10−6 1.50×10−6 2.37×10−6 2.9×10−5 8.4×101 1.99×10−4 1.22×10−1 5.24×10−2 4.10×10−2 As 4.67×10−6 2.01×10−6 3.17×10−6 3.0×10−4 1.5×101 4.78×10−5 1.56×10−2 6.69×10−3 5.24×10−3 Cd 8.30×10−7 3.57×10−7 5.63×10−7 1.0×10−3 6.3 3.55×10−6 8.30×10−4 3.57×10−4 2.80×10−4 Mn 2.26×10−5 9.72×10−6 1.53×10−5 1.4×10−5 1.58 6.79×10−1 5.32×10−1 Cu 1.76×10−5 7.59×10−6 1.20×10−5 4.0×10−2 4.41×10−4 1.90×10−4 1.49×10−4 Zn 9.61×10−5 4.13×10−5 6.52×10−5 3.0×10−1 3.20×10−4 1.38×10−4 1.08×10−4 V 1.67×10−5 7.19×10−6 1.14×10−5 7.0×10−3 2.39×10−3 1.03×10−3 8.05×10−4 Pb 5.44×10−5 2.34×10−5 3.69×10−5 3.5×10−3 1.55×10−2 6.68×10−3 5.23×10−3 -
[1] 王新, 聂燕, 陈红, 等. 兰州城区大气 PM2.5污染特征及来源解析 [J]. 环境科学, 2016, 37(5): 1619-1628. WANG X, NI Y, CHEN H, et al. Pollution characteristics and source apportionment of PM2.5 in Lanzhou City [J]. Environmental Science, 2016, 37(5): 1619-1628(in Chinese).
[2] 赵莉斯, 于瑞莲, 徐玲玲, 等. 厦门海沧区PM2.5中金属元素污染评价及来源分析 [J]. 环境科学, 2017, 38(10): 4061-4070. ZHAO L S, YU R L, XU L L, et al. Pollution assessment and source analysis of metals in PM2.5in Haicang District, Xiamen City, China [J]. Environmental Science, 2017, 38(10): 4061-4070(in Chinese).
[3] 张志刚. 鞍山市环境空气颗粒物中重金属元素分布特征 [J]. 中国环境监测, 2009, 25(5): 103-106. doi: 10.3969/j.issn.1002-6002.2009.05.030 ZHANG Z G. Anshan city ambient air particles in the distribution of heavy metals [J]. Environmental Monitoring in China, 2009, 25(5): 103-106(in Chinese). doi: 10.3969/j.issn.1002-6002.2009.05.030
[4] HU D, JIANG J Y. PM2.5 pollution and risk for lung cancer: A rising issue in China [J]. Journal of Environmental Protection, 2014(5): 731-738. [5] BELLINGER D C. Teratogen update: Lead and pregnancy [J]. Birth defects research part A: Clinical and Molecular Teratology, 2005, 73(6): 679-689. [6] GARZA A, VEGA R, SOTO E. Cellular mechanisms of lead neurotoxicity [J]. Med Sci Monit, 2006, 12(3): RA57-65. [7] GB/3095-2012 环境空气质量标准[S]. 2012. GB/3095-2012 Ambient air quality standards[S]. 2012(in Chinese).
[8] FANGSHENG M, FEI W, BAOHUI Y, et al. Spatial distribution properties of atmospheric particles over central Beijing Tianjin-Hebei Region in summer [J]. Research of Environmental Sciences, 2018, 31(5): 814-822. [9] 贾岳清, 殷惠民, 周瑞, 等. 北京初冬季PM2.5中无机元素与二次水溶性离子浓度特征 [J]. 环境化学, 2018, 37(12): 2767-2773. doi: 10.7524/j.issn.0254-6108.2018031202 JIA Y Q, YIN H M, ZHOU R et al. Characteristics of water-soluble inorganic ions and inorganic elements of PM2.5 in Beijing [J]. Environmental Chemistry, 2018, 37(12): 2767-2773(in Chinese). doi: 10.7524/j.issn.0254-6108.2018031202
[10] XIAOFENG W, SHENGLAING H, SHUCHANG C, et al. Spatiotemporal characteristics and health risk assessment of heavy metals in PM2.5 in Zhejiang province [J]. International Journal of Environmental Research and Public Health, 2018, 15(4): 583-600. doi: 10.3390/ijerph15040583 [11] JIBAO Z, FENGXIAO Z, CHUNLIANG C, et al. Spatial distribution and correlation characteristics of heavy metals in the seawater, suspended particulate matter and sediments in Zhanjiang Bay, China [J]. PLOS ONE, 2018, 13(8): e0201414-1439. doi: 10.1371/journal.pone.0201414 [12] 李慧, 张敬巧, 王涵, 等. 银川市冬季PM2.5重污染特征、来源与成因分析 [J]. 环境科学研究, 2020, 33(2): 289-295. LI H, ZHAMG J Q, WANG H, et al. Pollution characteristics and source analysis of PM2.5 in Yinchuan city during winter [J]. Research of Environmental Sciences, 2020, 33(2): 289-295(in Chinese).
[13] 胡玉, 胡启辉, 杜永, 等. 十堰市城区冬季PM2.5污染特征与来源解析 [J]. 环境科学研究, 2018, 31(6): 1029-1036. HU Y, HU Q H, DU Y, et al. Pollution characteristics and source apportionment of PM2.5 in winter in Shiyan City [J]. Research of Environmental Sciences, 2018, 31(6): 1029-1036(in Chinese).
[14] 陆喜红, 任兰, 吴丽娟. 南京市大气PM2.5中重金属分布特征及化学形态分析 [J]. 环境监控与预警, 2019, 11(1): 40-44. doi: 10.3969/j.issn.1674-6732.2019.01.008 LU X Y, REN L, WU L J. Research on the distribution characteristics and chemical speciation of heavy metals in PM2.5 in Nanjing [J]. Environmental Monitoring and Forewarning, 2019, 11(1): 40-44(in Chinese). doi: 10.3969/j.issn.1674-6732.2019.01.008
[15] 杨杰, 鲁荔, 杨金燕, 等. 攀枝花地区土壤及矿物中3种重金属形态及健康风险 [J]. 安全与环境学报, 2014, 14(1): 242-247. YANG J, LU L, YANG J Y, et al. Bioaccessibility of heavy metals in soils and minerals in Panzhihua City, Sichuan, Southwestern China [J]. Journal of Safety and Environment, 2014, 14(1): 242-247(in Chinese).
[16] 刘睿, 黄艺, 王丽,等. 西南典型矿业城市土壤及近地表大气尘中重金属污染特征及评价——以攀枝花市为例 [J]. 矿物岩石, 2019, 39(3): 111-119. LIU R, HUANG Y, WANG L, et al. Characteristic and evaluation of heavy metal pollution in soil and near-surface atmospheric dust of typical mining city in southwest China——a case study for Panzhihua City [J]. Journal of Mineralogy and Petrology, 2019, 39(3): 111-119(in Chinese).
[17] 时圣店, 谢南. 攀枝花市PM2.5污染现状与防治对策研究 [J]. 环境与发展, 2019, 31(9): 50-52. SHI S D, XIE N. Pollution status and prevention measures of PM2.5 in Panzhihua [J]. Environment and Development, 2019, 31(9): 50-52(in Chinese).
[18] 陈军辉. 四川省环境污染防治技术水平与绩效评估——大气污染防治卷(2018)[M]. 成都: 四川科学技术出版社, 2019. CHEN J H. Technology and performance evaluation of environmental pollution prevention and control in Sichuan——prevention and control of atmospheric pollution (2018)[M]. Chengdu: Sichuan Publishing House of Science Technology, 2019 (in Chinese).
[19] DB11/T 656-2009. 场地环境评价导则[S]. 2009. DB11/T 656-2009. Environmental site assessment guideline[S]. 2009(in Chinese).
[20] EPA/1989. Risk assessment guidance for superfund volume I: Human health evaluation manual. (Part F, supplement guidance for inhalation risk assessment) final[S]. 1989. [21] 环境保护部. 中国人群暴露参数手册[M]. 北京: 中国环境出版社, 2013. Ministry of environmental protection. Exposure factors handbook of Chinese population[M]. Beijing: China Environmental Science Press, 2013 (in Chinese).
[22] 石江伟. 西安市公交站点颗粒物暴露浓度时空分析与健康风险评估[D]. 西安, 长安大学, 2019. SHI J W. Spatio-temporal analysis and health risk assessment of particle exposure concentration at a bus stop in Xi'an[D]. Xi'an, Chang’an University, 2019 (in Chinese).
[23] 张晓茹, 孔少飞, 银燕, 等. 亚青会期间南京大气PM2.5中重金属来源及风险 [J]. 中国环境科学, 2016, 36(1): 1-11. doi: 10.3969/j.issn.1000-6923.2016.01.001 ZHANG X R, KONG S F, YING Y, et al. Sources and risk assessment of heavy metals in ambient PM2.5 during Youth Asian Game period in Nanjing [J]. China Environmental Science, 2016, 36(1): 1-11(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.01.001
[24] 郑灿利, 范雪璐, 董娴, 等. 郑灿利, 范雪璐, 董娴, 仇广乐, 陈卓. 贵阳市秋冬季PM2.5中重金属污染特征、来源解析及健康风险评估 [J]. 环境科学研究, 2020, 33(6): 1376-1383. ZHENG C L, FAN X L, DONG X, et al. Characteristics, sources and health risk assessment of heavy metals in PM2.5 collected between autumn and winter of Guiyang city [J]. Research of Environmental Sciences., 2020, 33(6): 1376-1383(in Chinese).
[25] 唐荣莉, 马克明, 张育新, 等. 北京城市道路灰尘重金属污染的健康风险评价 [J]. 环境科学学报, 2012, 32(8): 2006-2015. TANG R L, MA K M, ZAHGN Y X, et al. Health risk assessment of heavy metals of street dust in Beijing [J]. Acta Scientiae Circumstantiae, 2012, 32(8): 2006-2015(in Chinese).
[26] 李友平, 刘慧芳, 周洪, 等. 成都市PM2.5中有毒重金属污染特征及健康风险评价 [J]. 中国环境科学, 2015, 35(7): 2225-2232. doi: 10.3969/j.issn.1000-6923.2015.07.052 LI Y P, LIU H F, ZHOU H, et al. Contamination characteristics and health risk assessment of toxic heavy metals in PM2.5 in Chengdu [J]. China Environmental Science, 2015, 35(7): 2225-2232(in Chinese). doi: 10.3969/j.issn.1000-6923.2015.07.052
[27] 方文稳, 张丽, 叶生霞, 等. 安庆市降尘重金属的污染评价与健康风险评价 [J]. 中国环境科学, 2015, 35(12): 3795-3803. doi: 10.3969/j.issn.1000-6923.2015.12.034 FANG W W, ZHANG L, YE S X, et al. Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Anqing [J]. China Environmental Science, 2015, 35(12): 3795-3803(in Chinese). doi: 10.3969/j.issn.1000-6923.2015.12.034
[28] GAO J, WANG K, WANG Y, et al. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China [J]. Environmental Pollution, 2017, 233: 714. [29] GUANGHUI G, MEI L, TONGBIN C, et al. Effect of road traffic on heavy metals in road dusts and roadside soils [J]. Acta Scientiae Circumstantiae, 2008, 28(10): 1937-1945. [30] 丁铭, 邹强, 李旭文. 苏州市区PM2.5中元素污染特征 [J]. 环境监测管理与技术, 2016, 28(1): 32-35. doi: 10.3969/j.issn.1006-2009.2016.01.009 DING M, ZHOU Q, LI X W. Characteristics of elements pollution in PM2.5 in Suzhou City [J]. The Administration and Technique of Environmental Monitoring, 2016, 28(1): 32-35(in Chinese). doi: 10.3969/j.issn.1006-2009.2016.01.009
[31] 王士宝, 姬亚芹, 张伟, 等. 鞍山市冬季大气PM2.5中元素污染特征与来源解析 [J]. 环境与可持续发展, 2017, 42(2): 160-164. doi: 10.3969/j.issn.1673-288X.2017.02.049 WANG S B, JI Y Q, ZHANG W, et al. Pollution characteristics and sources of elements in PM2.5 during winter in Anshan city [J]. Environment and Sustainable Development, 2017, 42(2): 160-164(in Chinese). doi: 10.3969/j.issn.1673-288X.2017.02.049
[32] 王强, 戴玄吏, 巢文军, 等. 常州市春季大气PM2.5中金属元素的分析及污染特征 [J]. 环境工程学报, 2015, 9(1): 323-330. WANG Q, DAI X L, CHAO W J, et al. Analysis and pollution characteristics of metal elements in PM2.5 in Changzhou during spring [J]. Chinese Journal of Environmental Engineering, 2015, 9(1): 323-330(in Chinese).
[33] 孟琛琛, 王丽涛, 苏捷, 等. 邯郸市PM2.5化学组成特征及来源解析 [J]. 环境科学与技术, 2016, 39(2): 57-64. MENG C C, WANG L T, SU J, et al. Chemical compositions and source apportionment of PM2.5 in Handan City, Hebei province [J]. Environmental Science & Technology, 2016, 39(2): 57-64(in Chinese).
[34] 杨怀金, 杨德容, 叶芝祥, 等. 成都西南郊区春季PM2.5中元素特征及重金属潜在生态风险评价 [J]. 环境科学, 2016, 37(12): 4490-4503. YANG H J, YANG D R, YE Z X, et al. Characteristics of elements and potential ecological risk assessment of heavy metals in PM2.5 at the southwest suburb of Chengdu in spring [J]. Environmental Science, 2016, 37(12): 4490-4503(in Chinese).
[35] 蒋实, 张成江, 徐争启. 攀枝花市大气降尘的地球化学特征 [J]. 物探化探计算技术, 2010, 32(1): 84-89. doi: 10.3969/j.issn.1001-1749.2010.01.016 JIANG S, ZHANG C J, XU Z Q. Geochemical characteristics of atmospheric dust Panzhihua [J]. Computing Techniques for Geophysical and Geochemical Exploration, 2010, 32(1): 84-89(in Chinese). doi: 10.3969/j.issn.1001-1749.2010.01.016
[36] TAIWO A M, HARRISON R M, SHI Z. A review of receptor modeling of industrially emitted particulate matter [J]. Atmospheric Environment, 2014, 97: 109-120. doi: 10.1016/j.atmosenv.2014.07.051 [37] 焦姣, 姬亚芹, 白志鹏, 等. 重庆市颗粒物中元素分布特征及来源分析 [J]. 环境污染与防治, 2014, 36(3): 60-66. doi: 10.3969/j.issn.1001-3865.2014.03.012 JIAO J, JI Y Q, BAI Z P, et al. Element distribution characteristics and source apportionment of atmospheric particles in Chongqing [J]. Environmental Pollution & Control, 2014, 36(3): 60-66(in Chinese). doi: 10.3969/j.issn.1001-3865.2014.03.012
[38] ZHANG N, CAO J, XU H, et al. Elemental compositions of PM2.5 and TSP in Lijiang, southeastern edge of Tibetan Plateau during pre-monsoon period [J]. Particuology, 2013, 11(1): 63-69. doi: 10.1016/j.partic.2012.08.002 [39] 王钊, 韩斌, 倪天茹, 等. 天津市某社区老年人PM2.5暴露痕量元素健康风险评估 [J]. 环境科学研究, 2013, 26(8): 913-918. WANG Z, HANG B, NI T R, et al. Health risk assessment of trace elements of PM2.5 exposure for the elderly subpopulation in Tianjin, China [J]. Research of Environmental Sciences, 2013, 26(8): 913-918(in Chinese).
[40] 何瑞东, 张轶舜, 陈永阳, 等. 郑州市某生活区大气PM2.5中重金属污染特征及生态、健康风险评估 [J]. 环境科学, 2019, 40(11): 4774-4782. HE R D, ZHANG Y S, CHEN Y Y, et al. Heavy metal pollution characteristics and ecological and health risk assessment of atmospheric PM2.5 in a living area of Zhengzhou city [J]. Environmental Science, 2019, 40(11): 4774-4782(in Chinese).
[41] 莫招育, 杜娟, 刘慧琳, 等. 桂林市冬季大气PM2.5中重金属污染物健康风险评估 [J]. 环境监测管理与技术, 2019, 31(4): 23-27. doi: 10.3969/j.issn.1006-2009.2019.04.006 MO Z Y, DU J, LIU H L, et al. Health risk assessment of heavy metals in atmospheric PM2.5 during winter in Guilin [J]. The Administration and Technique of Environmental Monitoring, 2019, 31(4): 23-27(in Chinese). doi: 10.3969/j.issn.1006-2009.2019.04.006