-
多环芳烃(polycyclic aronatic hydrocarbons 简称PAHs)是大气中广泛存在的有机污染物,以稠环方式相连,具有“致癌、致畸、致突变”特性[1-3],对人体健康危害极大。大气中多环芳烃主要来自石油挥发、石油燃烧、化石燃料、垃圾燃烧等人类活动及一些自然过程[4-5],并以气相和颗粒相的形式存在。颗粒相可吸附在固体颗粒物表面,颗粒的粒径越小,呈现的比表面积越大,吸附PAHs的能力越强[6-8]。
近年来,许多国内外学者对颗粒物中多环芳烃进行了特征分析、来源解析以及风险评估。陈瑞等[9]利用高效液相色谱法对兰州市社区大气细颗粒物PM2.5中多环芳烃(PAHs)进行质量浓度及其组成特征分析,运用毒性当量浓度及终身超额致癌风险(ILCR)进行毒性评价。严宙宁等[10]对深圳市南山区和龙岗区进行大气采样,使用高效液相色谱仪定量分析样品PM2.5中PAHs含量;张艺璇等[11]采集长春市秋季大气中的PM2.5样品,使用气相色谱质谱仪(GC-MS)分析了样品中17种多环芳烃的浓度和组成特征,运用主成分分析法和比值法确定PAHs的污染来源;Kim等[12]在Environment International (EI)发表了PAHs对人体健康的影响。
开封市地处中原地区,地势较低,不利于污染物的扩散。每逢夏、秋季大量游客前来参观,庞大的交通流量给当地天气质量状况带来重要影响。自2017年,全国各省雾霾现象日益严重,河南省的天气状况同样不容乐观。根据调查,2018年,开封市空气质量达标天数仅占全年54.12%,超标天数比例高达45.88%。2019年,一年中空气污染严重时PM2.5含量最大值达278 μg·m−3,PM10的含量高达286 μg·m−3。大气中颗粒物含量维持在高水平,增大了多环芳烃对人体危害的可能性,因此对于可吸入颗粒物PM10和细颗粒物PM2.5中PAHs的研究一直是近年来的热点话题。
开封市金明大道与郑开大道交界处,每天有交警执勤指挥,长期暴露于环境中,且采样点周围有金明广场等娱乐场所,经常有老人孩子前往健身娱乐。因此,本文选取交界处作为研究对象,采集第三季度(7—9月)的大气样品,使用GC-MS对TSP、PM10、PM2.5等3种颗粒物中的多环芳烃的浓度和组成特征进行分析,并通过计算苯并芘等效致癌浓度和终身致癌超额危险度进行健康风险评估。
开封市夏秋季交通干道颗粒物中多环芳烃特征分析及健康风险评估
Characteristics and health risk assessment of PAHs in particulate matter of mainroads in Kaifeng in summer and autumn
-
摘要: 为了解开封市夏、秋季交通干道大气颗粒物中多环芳烃浓度情况,判断对人体的危害程度,于2019年7月至9月采集开封市金明大道和郑开大道交界处的大气颗粒物样品,使用GC-MS定量分析不同样品中的16种多环芳烃的质量浓度,采用环境健康风险评价方法,开展开封市夏秋季交通干道颗粒物中PAHs的健康风险评价研究。结果表明,开封市夏秋季TSP、PM10、PM2.5浓度整体上低于《环境空气质量标准》(GB3095-2012)二级标准限值,二次PM贡献率大;TSP、PM10、PM2.5中∑PAHs质量浓度范围分别为7.64—19.42、5.171—9.40、2.52—4.79 ng·m−3,单体平均浓度范围分别为0.466—1.488、0.177—0.934、0.087—0.493 ng·m−3,PAHs主要分布于可吸入颗粒物中;以BaP为基准,计算等效毒性因子以及通过呼吸暴露途径对成人和儿童造成的超额终生致癌风险,分别为 1.62×10−7和7.75×10−8,对人体健康风险不明显。Abstract: In order to understand the concentration and determine the degree of harm to humans of polycyclic aromatic hydrocarbons in the particles of the main roads in summer and autumn in Kaifeng City, the particulate matter samples were collected at the junction of Jinming Avenue and Zhengkai Avenue in Kaifeng City from July to September 2019. Gas chromatography-mass spectrometry (GC-MS) was used to determine 16 kinds of PAHs in different samples. And then, the method of environment health risk assessment proposed by Nisbet was adopted to assess the health risks of PAHs in particulate matter of mainroads in Kaifeng in summer and autumn.The results showed that: The concentration of TSP, PM10, and PM2.5 were generally lower than the limit values for the class 2 according to the National Ambient Air Quality Standard (GB 3095—2012), and the secondary PM contribution rate was large; the total concentration of PAHs in TSP, PM10, and PM2.5 were 7.64—19.42, 5.171—9.40 and 2.52—4.79 ng·m−3, and the mean monomer concentration were 0.466—1.488, 0.177—0.934 and 0.087—0.493 ng·m−3, respectively; PAHs were mainly distributed in inhalable particles. Based on BaP, calculating the toxic equivalent factor and the incremental lifetime cancer risks to adults and children through respiratory exposure routes, which were 1.62×10−7 and 7.75×10−8, respectively, which were not obvious risk to human health.
-
Key words:
- PAHs /
- traffic arterial road /
- GC-MS /
- risk assessment /
- Kaifeng
-
表 1 实验仪器及分析方法
Table 1. Experimental instruments and analysis methods
实验项目
Experimental projects仪器名称
Instrument name仪器规格及型号
Instrument specifications and models滤膜前处理 环膜 石英纤维(直径Φ75 mm) 滤膜 石英纤维(直径Φ90 mm) 分析天平 马弗炉 颗粒物采集 智能中流量采样器总悬浮微粒采样器
组合式多功能切割器TH-150A型 颗粒物质量浓度的测定 分析天平 多环芳烃浓度的测定 气相色谱-质谱联用仪 5975C/890N 型(美国安捷伦) 全自动固相萃取仪 Preval SPE 304 型(北京普立泰科) 多功能氮吹仪 HN200 表 2 大气颗粒物中各PAHs 含量的特征比值
Table 2. The characteristic ratio of PAHs content in atmospheric particles
表 3 各化合物毒性当量因子记录表
Table 3. The record table of toxicity equivalent factors for each compound
化合物 Compound name TEFi 化合物 Compound name TEFi Nap 0.001 BaA 0.1 Acl 0.0001 Chr 0.01 Ace 0.0001 BbF 0.1 Flu 0.0001 BkF 0.1 Phe 0.0001 BaP 1 Ant 0.1 IDP 0.1 Flt 0.001 DBahA 1 Pyr 0.0001 BghiP 0.01 -
[1] YUE H F, YUN Y, GAO R, et al. Winter polycyclic aromatic hydrocarbon-bound particulate matter from peri-urban North China promotes lung cancer cell metastasis [J]. Environmental Science& Technology, 2015, 49(24): 14484-14493. [2] PIETERSE B, FELZEL E, WINTER R, et al. PAH-CALUX, an optimized bioassay for AhR-mediated hazard identification of polycyclic aromatic hydrocarbons (PAHs) as individual compounds and in complex mixtures [J]. Environmental Science& Technology, 2013, 47(20): 11651-11659. [3] YANG P, WANG Y X, CHEN Y J, et al. Urinary polycyclic aromatic hydrocarbon metabolites and human semen quality in China [J]. Environmental Science& Technology, 2017, 51(2): 958-967. [4] 高庚申, 迟峰, 毛金群, 等. 贵阳市大气细颗粒物中多环芳烃时空分布特征 [J]. 环境监控与预警, 2019, 11(4): 43-47. doi: 10.3969/j.issn.1674-6732.2019.04.010 GAO G S, CHI F, MAO J Q, et al. Pollutant characterization of polycyclic aromatic hydrocarbons (PAHs) in atmospheric fine particulate matter in Guiyang City [J]. Environmental Monitoring and Early Warning, 2019, 11(4): 43-47(in Chinese). doi: 10.3969/j.issn.1674-6732.2019.04.010
[5] BANDOWE B A, MEUSEL H, HUANG R J, et al. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment [J]. Science of The Total Environment, 2014, 473-474(3): 77-87. [6] LAMMEL G, SEHILI A M, BOND T C, et al. Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons-a modelling approach [J]. Chemosphere, 2009, 76(1): 98-106. doi: 10.1016/j.chemosphere.2009.02.017 [7] WANG X, CHOW J C, KOHL S D, et al. Characterization of PM2.5 and PM10 fugitive dust source profiles in the Athabasca Oil Sands Region [J]. Journal of the Air& Waste Manage Association, 2015, 65(12): 1421-1433. [8] WATSON J G, CHOW J C, LOWENTHAL D H, et al. PM2.5 source apportionment with organic markers in the Southeastern Aerosol Research and Characterization (SEARCH) study [J]. Journal of the Air & Waste Manage Association, 2015, 65(9): 1104-1118. [9] 陈瑞, 李拥军, 杨海霞, 等. 2018年兰州社区大气细颗粒物中多环芳烃的污染特征及健康风险评价 [J]. 卫生研究, 2019, 48(6): 957-963. CHEN R, LI Y J, YANG H X, et al. Pollution characteristics and health risk assessment of polycyclic aromatic hydrocarbons in fine particulate matter in Lanzhou community [J]. Health Research, 2019, 48(6): 957-963(in Chinese).
[10] 严宙宁, 牟敬锋, 严燕, 等. 2017年深圳市大气PM2.5污染状况及其来源解析研究 [J]. 实用预防医学, 2019, 26(10): 1172-1176. doi: 10.3969/j.issn.1006-3110.2019.10.006 YAN Z N, MOU J F, YAN Y, et al. Pollution status and source apportionment of atmospheric particulates (PM2.5) in Shenzhen city [J]. Practical Preventive Medicine, 2019, 26(10): 1172-1176(in Chinese). doi: 10.3969/j.issn.1006-3110.2019.10.006
[11] 张艺璇, 曹芳, 郑涵, 等. 2017年秋季长春市PM2.5中多环芳烃的污染来源及健康风险评价 [J]. 环境科学, 2020, 41(2): 564-573. ZHANG Y X, CAO F, ZHENG H, et al. Source apportionment and health risk assessment of Polycyclic Aromatic Hydrocarbons in PM2.5 in Changchun city, autumn of 2017 [J]. Environmental Science, 2020, 41(2): 564-573(in Chinese).
[12] KIM K H, JAHAN S A, KABIR E, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects [J]. Environment International, 2013, 60: 71-80. doi: 10.1016/j.envint.2013.07.019 [13] 李健, 安俊岭, 陈勇, 等. 脱硝技术与天然气应用情景下京津冀地区空气质量模拟评估 [J]. 气候与环境研究, 2013, 18(4): 472-482. doi: 10.3878/j.issn.1006-9585.2012.11200 LI J, AN J L, CHEN Y, et al. Simulation of air quality over Beijing, Tianjin, and Hebei province of China with application of catalysts for selective catalytic reduction of NOx to diesel exhaust and natural gas boilers [J]. Climatic and Environmental Research, 2013, 18(4): 472-482(in Chinese). doi: 10.3878/j.issn.1006-9585.2012.11200
[14] 赵顺征, 易红宏, 唐晓龙, 等. 空气细颗粒物污染的来源、危害及控制对策 [J]. 科技导报, 2014, 32(33): 61-66. doi: 10.3981/j.issn.1000-7857.2014.33.008 ZHAO S Z, YI H H, TANG X L, et al. Source and harm of air fine particulate matter pollution and control strategies [J]. Science and Technology Herald, 2014, 32(33): 61-66(in Chinese). doi: 10.3981/j.issn.1000-7857.2014.33.008
[15] 江瑶, 汪婷, 沈利洪, 等. 2012年苏州地区PM2.5和PM10的时空变化特征分析 [J]. 热带气象学报, 2015, 31(1): 128-136. JIANG Y, WANG T, SHEN L H, et al. Analysis on tempo-spatial variations of PM2.5 and PM10 in Suzhou region in 2012 [J]. Journal of Tropical Meteorology, 2015, 31(1): 128-136(in Chinese).
[16] 王涛, 康淮钰, 刘梓雅, 等. 基于比值和偏相关的大气污染物源识别-以2014年江苏省为例 [J]. 复旦大学学报(自然科学版), 2016, 55(4): 538-542. WANG T, KANG H Y, LIU Z Y, et al. Source identification of atmospheric pollutants based on specific value and partial correlation-taking Jiangsu province in 2014 as an example [J]. Journal of Fudan University (Natural Science Edition), 2016, 55(4): 538-542(in Chinese).
[17] 赵阳, 林晓辉, 胡恭任, 等. 南昌市秋季PM2.5中多环芳烃的污染特征、风险评价及来源分析 [J]. 环境化学, 2016, 35(3): 500-507. doi: 10.7524/j.issn.0254-6108.2016.03.2015101002 ZHAO Y, LIN X H, HU G R, et al. Pollution characteristics, risk assessment and source analysis of polycyclic aromatic hydrocarbons in PM2.5 collected in autumn in Nanchang City [J]. Environmental Chemistry, 2016, 35(3): 500-507(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.03.2015101002
[18] 胡锋, 王兴磊, 赵晶. 伊宁市夏季PM2.5载带多环芳烃污染特征及来源解析 [J]. 常熟理工学院学报, 2018, 32(2): 114-118. doi: 10.3969/j.issn.1008-2794.2018.02.024 HU F, WANG X L, ZHAO J. An analysis of the pollution characteristics and source identification of the PM2.5 carrying PAHs in the city of Yining in Summer [J]. Journal of Changshu Institute of Technology, 2018, 32(2): 114-118(in Chinese). doi: 10.3969/j.issn.1008-2794.2018.02.024
[19] GSCHWEND P M , HITES R A . Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States[J]. Geochimica Et Cosmochimica Acta, 1981, 45(12): 2359-2367. [20] ROGGE W F , HILDEMANN L M, MAZUREK M A , et al. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks[J]. Environmental Science and Technology; (United States), 1993, 27(4): 636-651. [21] 杨旭曙, 王正萍, 宋艳涛. 城市交通干道区颗粒物中多环芳烃的源解析研究[J]. 环境科学与技术, 2004, 27(6): 50-51. YANG X S, WANG Z P, SONG Y T. Source apportionment of polycyclic aromatic hydrocarbons in particulate matter in urban traffic arterial area[J]. Environmental Science and Technology, 2004, 27(6): 50-51. (in Chinese)
[22] NISBET I C, LAGOY P K. Toxic equivalency factors (TEFS) for polycyclic aromatic hydrocarbon (PAHS) [J]. Regulatory Toxicology and Pharmacology, 1992, 16(3): 290-300. doi: 10.1016/0273-2300(92)90009-X [23] 王伟. 鞍山市大气中多环芳烃健康影响评价 [J]. 环境科学与管理, 2013, 38(6): 192-194. doi: 10.3969/j.issn.1673-1212.2013.06.044 WANG W. Health impact assessment of PAHs on atmosphere of Anshan City [J]. Environmental Science and Management, 2013, 38(6): 192-194(in Chinese). doi: 10.3969/j.issn.1673-1212.2013.06.044
[24] 郁倩, 张娟, 安可, 等. 徐州市大气细颗粒物中多环芳烃人群健康风险评估 [J]. 中国校医, 2019, 33(12): 884-886, 916. YU Q, ZHANG J, AN K, et al. Assessment on health risk of polycyclic aromatic hydrocarbons in airborne PM2.5 in Xuzhou City [J]. Chinese Journal of School Doctor, 2019, 33(12): 884-886, 916(in Chinese).
[25] 王焕新, 张续, 马琳, 等. 北京市昌平区大气颗粒物中多环芳烃暴露及人群健康风险评价 [J]. 环境与健康, 2016, 33(11): 999-1002. WANG H X, ZHANG X, MA L, et al. Health risk assessment of inhabitants exposed to polycyclic aromatic hydrocarbons and particulate matter in air in Changping district of Beijing [J]. Journal of Environment and Health, 2016, 33(11): 999-1002(in Chinese).
[26] 林海鹏, 武晓燕, 王琼, 等. 兰州市工业区PM10中多环芳烃的来源分析及健康风险评估 [J]. 环境与健康, 2013, 30(5): 426-430. LIN H P, WU X Y, WANG Q, et al. Source analysis and health risk assessment of PAHs in PM10 in industrial area of Lanzhou [J]. Journal of Environment and Health, 2013, 30(5): 426-430. (in Chinese)