重金属-柠檬酸-针铁矿三元体系的表面络合模型研究

吴江彤, 曾安容, 李清兰, 任静华, 许伟伟, 顾雪元. 重金属-柠檬酸-针铁矿三元体系的表面络合模型研究[J]. 环境化学, 2021, (2): 520-530. doi: 10.7524/j.issn.0254-6108.2020053102
引用本文: 吴江彤, 曾安容, 李清兰, 任静华, 许伟伟, 顾雪元. 重金属-柠檬酸-针铁矿三元体系的表面络合模型研究[J]. 环境化学, 2021, (2): 520-530. doi: 10.7524/j.issn.0254-6108.2020053102
WU Jiangtong, ZENG Anrong, LI Qinglan, REN Jinghua, XU Weiwei, GU Xueyuan. Development of surface complexation model of heavy metal-citric acid-goethite ternary system[J]. Environmental Chemistry, 2021, (2): 520-530. doi: 10.7524/j.issn.0254-6108.2020053102
Citation: WU Jiangtong, ZENG Anrong, LI Qinglan, REN Jinghua, XU Weiwei, GU Xueyuan. Development of surface complexation model of heavy metal-citric acid-goethite ternary system[J]. Environmental Chemistry, 2021, (2): 520-530. doi: 10.7524/j.issn.0254-6108.2020053102

重金属-柠檬酸-针铁矿三元体系的表面络合模型研究

    通讯作者: 顾雪元, E-mail: xygu@nju.edu.cn
  • 基金项目:

    国家自然科学基金(21876080,21577062)和江苏省科技计划重点项目(BE2019624)资助.

Development of surface complexation model of heavy metal-citric acid-goethite ternary system

    Corresponding author: GU Xueyuan, xygu@nju.edu.cn
  • Fund Project: Supported by the Natural Science Foundation of China (21876080, 21577062),and Jiangsu Science and Technology Project (BE2019624).
  • 摘要: 根际环境产生的柠檬酸等小分子有机酸可能影响重金属的溶出效应.本文研究了4种重金属Cd、Pb、Cu、Ni及柠檬酸在针铁矿表面的三元体系吸附行为,结果发现柠檬酸促进了4种重金属酸性条件下在针铁矿表面的吸附量,而Cu、Ni促进了柠檬酸碱性条件下的吸附.结合红外光谱图发现,重金属-柠檬酸-针铁矿主要存在以下2种三元体系形态,即以柠檬酸为"桥键"的≡Fe2CitMe形态和以重金属为"桥键"的(≡FeOH)2MeCit形态.采用电荷分配-多位点表面配合(CD-MUSIC)模型成功预测了的三元体系重金属及柠檬酸在针铁矿表面的吸附行为,模型结果发现柠檬酸的存在显著改变了重金属的吸附形态,其中≡Fe2CitMe为Cd、Pb、Ni三元体系中酸性条件下的主要形态,(≡FeOH)2CuCit为Cu的主要形态.研究补充完善了根际环境的土壤形态模型数据库,为预测重金属的溶出及生物有效性的模型研究提供了基础数据.
  • 加载中
  • [1] WANG Q Y D, CUI Y, LIU X. Instances of soil and crop heavy metal contamination in China[J]. Soil & Sediment Contamination, 2001, 10(5):497-510.
    [2] DONG J, YANG Q W, SUN L N, et al. Assessing the concentration and potential dietary risk of heavy metals in vegetables at a Pb/Zn mine site, China[J]. Environmental Earth Sciences, 2011, 64(5):1317-1321.
    [3] NABULO G, YOUNG S D, BLACK C R. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils[J]. Science of The Total Environment, 2010, 408(22):5338-5351.
    [4] FACCHINELLI A, SACCHI E, MALLEN L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution, 2001, 114(3):313-324.
    [5] SOLGI E, ESMAILI-SARI A, RIYAHI-BAKHTIARI A, et al. Soil contamination of metals in the three industrial estates, arak, iran[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(4):634-638.
    [6] 孔涛,刘民,淑敏,等. 低分子量有机酸对土壤微生物数量和酶活性的影响[J]. 环境化学,2016,35(2):348-354.

    KONG T, LIU M, SHU M, et al. Effect of low molecular weight organic acids on soil microbe number and soil enzyme activities[J]. Environmental Chemistry, 2016, 35(2):348-354(in Chinese).

    [7] JONES D L. Organic acids in the rhizosphere:A critical review[J]. Plant and Soil, 1998, 205(1):25-44.
    [8] RYAN P R, DELHAIZE E, JONES D L. Function and mechanism of organic anion exudation from plant roots[M]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001:527-560.
    [9] LACKOVIC K, JOHNSON B B, ANGOVE M J, et al. Modeling the adsorption of citric acid onto Muloorina illite and related clay minerals[J]. Journal of Colloid and Interface Science, 2003, 267(1):49-59.
    [10] 刘世亮,陈娇君,刘芳,等. 石灰性褐土中柠檬酸对土壤Cu(Ⅱ)、Cd(Ⅱ)吸附-解吸的影响[J]. 环境化学,2012,31(6):849-855.

    LIU S L, CHEN J J, LIU F, et al. Effects of citric acid on Cu(Ⅱ) and Cd(Ⅱ) adsorption & desorption in calcareous cinnamon soil[J]. Environmental Chemistry, 2012, 31(6):849-855(in Chinese).

    [11] JONES D L, DENNIS P G, OWEN A G, et al. Organic acid behavior in soils-misconceptions and knowledge gaps[J]. Plant and Soil, 2003, 248(1):31-41.
    [12] 莫淑勋. 土壤中有机酸的产生、转化及对土壤肥力的某些影响[J]. 土壤学进展,1986(4):3-12. MO S X. Production and transformation of organic acids in soil and certain effects on soil fertility[J]. Progress in Soil Science, 1986

    (4):3-12(in Chinese).

    [13] 丁永祯,李志安,邹碧. 土壤低分子量有机酸及其生态功能[J]. 土壤,2005,37(3):243-250.

    DING Y Z, LI Z A, ZOU B. Low-molecular-weight organic acids and their ecological roles in soil[J]. Soils, 2005, 37(3):243-250(in Chinese).

    [14] LIU H, CHEN T, FROST R L. An overview of the role of goethite surfaces in the environmen[J]. Chemosphere, 2014, 103:1-11.
    [15] BOWLES J F W. The iron oxides:Structure, properties reactions occurrence and uses[J]. Mineralogical Magazine, 1997, 61(408):740-741.
    [16] YEASMIN S, SINGH B, KOOKANA R S, et al. Influence of mineral characteristics on the retention of low molecular weight organic compounds:A batch sorption-desorption and ATR-FTIR study[J]. Journal of Colloid and Interface Science, 2014, 432:246-257.
    [17] BONITO M D, LOFTS S, GROENENBERG J E. Chapter 11-models of geochemical peciation:Structure and applications[M]. Environmental Geochemistry (Second Edition). Elsevier, 2018:237-305.
    [18] SPOSITO G. The chemistry of soils[M]. New York:Oxford University Press, 1989:277.
    [19] WENG L, TEMMINGHOFF E J, VAN RIEMSDIJK W H. Contribution of individual sorbents to the control of heavy metal activity in sandy soil[J]. Environmental Science & Technology, 2001, 35:4436-4443.
    [20] KOMAREK M, ANTELO J, KRALOVA M, et al. Revisiting models of Cd, Cu, Pb and Zn adsorption onto Fe(Ⅲ) oxides[J]. Chemical Geology, 2018, 493:189-198.
    [21] HIEMSTRA T, VAN RIEMSDIJK W H. A surface structural approach to ion adsorption:The Charge Distribution (CD) Model[J]. Journal of Colloid and Interface Science, 1996, 179(2):488-508.
    [22] HIEMSTRA T, DE WIT J C M, VAN RIEMSDIJK W H. Multisite proton adsorption modeling at the solid/solution interface of (HYDR)oxides:A new approach:Ⅱ. Application to various important (HYDR)oxides[J]. Journal of Colloid and Interface Science, 1989, 133(1):105-117.
    [23] HIEMSTRA T, VAN RIEMSDIJK W H. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (HYDR)oxides[J]. Journal of Colloid and Interface Science, 1999, 210(1):182-193.
    [24] RUSTAD J R, BOILY J F O. Density functional calculation of the infrared spectrum of surface hydroxyl groups on goethite (α-FeOOH)[J]. American Mineralogist, 2010, 95(2/3):414-417.
    [25] HAN J, KATZ L E. Capturing the variable reactivity of goethites in surface complexation modeling by correlating model parameters with specific surface area[J]. Geochimica et Cosmochimica Acta, 2019, 244:248-263.
    [26] VILLALOBOS M, CHENEY M A, ALCARAZ-CIENFUEGOS J. Goethite surface reactivity:Ⅱ. A microscopic site-density model that describes its surface area-normalized variability[J]. Journal of Colloid and Interface Science, 2009, 336(2):412-422.
    [27] 吴江彤. 重金属-柠檬酸-土壤地球化学吸附模型的构建及应用[D]. 南京:南京大学,2020. WU J T. Establishment and application of heavy metal-citric acid-soil geochemical adsorption model[D]. Nanjing:Nanjing University, 2020(in Chinese).
    [28] POWELL K, BROWN P, BYRNE R, et al. Chemical speciation of environmentally significant metals with inorganic ligands. Part 4:The Cd2++OH-, Cl-, CO32-, SO42- and PO43- systems (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83:1163-1214.
    [29] POWELL K, BROWN P, BYRNE R, et al. Chemical speciation of environmentally significant metals with inorganic ligands. Part 3:The Pb2++OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2009, 81:2425-2476.
    [30] KEIZER M G, VAN RIEMSDIJK W H. ECOSAT:A computer program for the calculation of speciation and transport in soil-water systems, version 4.9 user's manual[M]. The Netherlands:Wageningen University, 2009.
    [31] KINNIBURGH D G. FIT user guide, BGS technical report WD/93/23[M]. Keyworth, UK:British Geological Survey, 1993.
    [32] LENHART J J, BARGAR J R, DAVIS J A. Spectroscopic evidence for ternary surface complexes in the lead(Ⅱ)-malonic acid-hematite system[J]. Journal of Colloid and Interface Science, 2001, 234(2):448-452.
    [33] NAKAMOTO K. Infrared and raman spectra of inorganic and coordination compounds[M]. New York:Wiley-Interscience, 1997.
    [34] FILIUS J D, HIEMSTRA T, VAN RIEMSDIJK W H. Adsorption of small weak organic acids on goethite:Modeling of mechanisms[J]. Journal of Colloid and Interface Science, 1997, 195(2):368-380.
    [35] ZHAO X, JIANG Y, GU X, et al. Multisurface modeling of Ni bioavailability to wheat (Triticum aestivum L.) in various soils[J]. Environmental Pollution, 2018, 238:590-598.
    [36] WU J, ZHAO X, LI Z, et al. Thermodynamic and kinetic coupling model of Cd(Ⅱ) and Pb(Ⅱ) adsorption and desorption on goethite[J]. Science of The Total Environment, 2020, 727:138730.
    [37] OSTERGREN J D, BARGAR J R, BROWN G E, et al. Combined EXAFS and FTIR investigation of sulfate and carbonate effects on Pb(Ⅱ) sorption to goethite (alpha-FeOOH)[J]. Journal of Synchrotron Radiation, 1999, 6:645-647.
    [38] SONG Y, SWEDLUND P J, SINGHAL N. Copper(Ⅱ) and Cadmium(Ⅱ) sorption onto ferrihydrite in the presence of phthalic acid:Some properties of the ternary complex[J]. Environmental Science & Technology, 2008, 42(11):4008-4013.
  • 加载中
计量
  • 文章访问数:  3601
  • HTML全文浏览数:  3601
  • PDF下载数:  71
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-31

重金属-柠檬酸-针铁矿三元体系的表面络合模型研究

    通讯作者: 顾雪元, E-mail: xygu@nju.edu.cn
  • 1. 南京大学环境学院, 南京, 210023;
  • 2. 自然资源部国土(耕地)生态监测与修复工程技术创新中心, 江苏省地质调查研究院, 南京, 210018
基金项目:

国家自然科学基金(21876080,21577062)和江苏省科技计划重点项目(BE2019624)资助.

摘要: 根际环境产生的柠檬酸等小分子有机酸可能影响重金属的溶出效应.本文研究了4种重金属Cd、Pb、Cu、Ni及柠檬酸在针铁矿表面的三元体系吸附行为,结果发现柠檬酸促进了4种重金属酸性条件下在针铁矿表面的吸附量,而Cu、Ni促进了柠檬酸碱性条件下的吸附.结合红外光谱图发现,重金属-柠檬酸-针铁矿主要存在以下2种三元体系形态,即以柠檬酸为"桥键"的≡Fe2CitMe形态和以重金属为"桥键"的(≡FeOH)2MeCit形态.采用电荷分配-多位点表面配合(CD-MUSIC)模型成功预测了的三元体系重金属及柠檬酸在针铁矿表面的吸附行为,模型结果发现柠檬酸的存在显著改变了重金属的吸附形态,其中≡Fe2CitMe为Cd、Pb、Ni三元体系中酸性条件下的主要形态,(≡FeOH)2CuCit为Cu的主要形态.研究补充完善了根际环境的土壤形态模型数据库,为预测重金属的溶出及生物有效性的模型研究提供了基础数据.

English Abstract

参考文献 (38)

目录

/

返回文章
返回