-
双酚A(bisphenol A, BPA)作为一种有机化工原料,广泛应用于聚碳酸酯和环氧树脂等材料的合成[1]。然而由于BPA具有内分泌干扰效应,许多国家已限制或禁止其用于食品包装,婴儿用品和热敏纸等产品的生产[2]。双酚S(bisphenol S, BPS)因其结构和性质与BPA相似,且含有的刚性O=S=O官能团使其表现出比BPA更高的热稳定性[3],被视为BPA的“安全替代物” [4]。随着BPS的广泛应用使其不可避免的进入环境中,目前BPS已在食物、个人护理产品、沉积物、甚至人体尿液中被检测到[5-6]。有研究报道BPS具有与BPA类似的内分泌干扰效应,如较低浓度(<100 μg·L−1)的BPS会引起斑马鱼的发育毒性,损坏其正常繁殖,并干扰其体内的类固醇平衡[7];高浓度的BPS(3.0 mg·L−1)还会对斑马鱼的胚胎神经系统产生严重影响[8]。因此,亟需开展工作去研究BPS在环境中的归趋及环境风险等问题。
土壤是有机污染物在环境中主要的汇,有机污染物在土壤中的吸附行为将影响其在土壤中的迁移转化和生物有效性。当前,已有大量文献研究了BPA在土壤上的环境行为和吸附机制[9-11],而对BPS的相关研究主要集中在毒性、内分泌干扰效应[11-12]方面。虽然近期有少量研究关注BPS在土壤中的吸附解吸等行为[13],但BPS在土壤中吸附机制尚未清晰。另外,人为耕作中的施肥、翻耕等过程将显著改变土壤的理化性质[14],势必对BPS在土壤中的吸附产生影响。因此,本研究将对比分析人为耕作对BPS吸附的影响,深入探究BPS在土壤中的吸附机制,为理解BPS在土壤中的迁移转化及环境风险评价提供重要的视角。
本研究选取云南两个典型地区的耕作和未耕作的土壤,以及滇池周边的泥炭土作为高有机质土壤的参照,研究BPS以及BPA在不同土壤中的吸附行为,旨在揭示BPS在土壤中的吸附机制,为理解BPS环境行为和风险评估提供基础数据。
双酚S及双酚A在云南典型耕作土壤上的吸附机制
Adsorption mechanism of bisphenol S and bisphenol A on typical cultivated soil in Yunnan Province
-
摘要: 近年来,双酚S(BPS)作为双酚A(BPA)的替代物被大量引入土壤环境,研究发现BPS 具有与BPA类似的内分泌干扰效应,亟需开展工作研究BPS在土壤中的环境行为。本研究选取云南元阳、蒙自两地区耕作前后的土壤样品,通过批量吸附实验研究BPS以及BPA在云南典型耕作土壤中的吸附机制。结果表明,Freundlich模型能较好拟合BPS和BPA在土壤上的吸附等温线(r2adj:0.953—0.997),且表现出较高的非线性吸附。吸附系数Kd与土壤有机碳(foc)呈显著正相关,表明BPS和BPA在土壤上的吸附以憎水性作用为主。排除憎水性作用后,BPA在土壤上的吸附高于BPS 是由于BPA与土壤有机质之间的电子供-受体作用强于BPS所导致的。蒙自耕作土壤中(MP)三七根所分泌的有机酸可能会破坏土壤矿物结构而导致土壤有机质有所降低,但有机酸分子中的羧基可增强土壤的电子受体能力,使得BPA与MP土壤之间形成强烈的电子供-受体作用而使其吸附增强。Abstract: Bisphenol S has been introduced into the soil environment as a substitute for Bisphenol A. However, studies have shown that BPS has similar estrogenic activity as BPA, and it is essential to investigate the environmental behavior of BPS in soil. The native and cultivated soil in Yuanyang and Mengzi of Yunnan were collected, and the adsorption mechanism of BPS and BPA on typical native and cultivated soil in Yunnan was studied through batch adsorption experiments. The results showed that the Freundlich model could well fit the adsorption isotherms of BPS and BPA on soils (r2adj: 0.953—0.997), and the adsorption isotherms exhibited significant nonlinear. The adsorption coefficient Kd is significantly positive correlated with soil organic carbon (foc), indicating that the adsorption of BPS and BPA on the soils is dominated by hydrophobicity effect. Higher adsorption of BPA on soils than that of BPS when hydrophobic effects were excluded is owing to the electron donor-acceptor interaction between BPA and soil organic matter is stronger than that of BPS. The organic acids secreted by the roots of Notoginseng in Mengzi tillage soil (MP) may destroy the soil mineral structure and then lead to a decrease in soil organic matter. However, the carboxyl groups in the organic acid molecules can enhance the electron-donating ability of the MP, then strengthen the electron donor-acceptor interaction between BPA and MP, resulting in higher adsorption of BPA than BPS on MP.
-
Key words:
- BPS /
- artificial farming /
- adsorption mechanism /
- root exudates
-
表 1 BPS和BPA的理化性质及分子结构
Table 1. The physicochemical properties and molecular structure of BPS and BPA
表 2 土壤样品的理化性质
Table 2. The physicochemical properties of soil samples
样品 元素含量Element content /% 原子比Atomic ratio pHzpc CEC/
(cmol·kg−1)SA/
(m2·g−1)C H O N S H/C (N+O)/C YN 0.45 0.97 7.90 0.06 0.08 25.68 13.24 2.24 2.12 33.94 YP 1.93 1.01 8.38 0.18 0.04 6.25 3.32 2.87 6.68 18.36 YD 1.94 1.02 8.59 0.19 0.05 6.30 3.40 2.78 4.83 18.36 MN 2.66 1.80 13.96 0.23 0.07 8.13 4.01 3.69 5.33 82.01 MP 1.96 1.71 15.51 0.18 0.06 10.47 6.02 3.63 8.18 35.02 DP 22.04 3.01 17.03 1.27 0.38 1.64 0.63 3.54 7.81 2.62 表 3 BPS和BPA在土壤上的吸附等温线拟合参数
Table 3. Isotherms fitting results of BPA and BPS on soils by Freundlich model
样品
Samples土样
Soillg KFa n r2adj SEEb Kd Koc Ce=1 mg·L−1 Ce=10 mg·L−1 Ce=1 mg·L−1 Ce=10 mg·L−1 BPS YN 0.093 0.889 0.953 0.121 1.24 0.96 2.75 2.13 YP 1.089 0.748 0.997 0.025 12.27 6.88 6.33 3.55 YD 1.051 0.758 0.997 0.027 11.26 6.45 5.80 3.32 MN 1.204 0.648 0.996 0.028 16.00 7.12 6.01 2.67 MP 1.091 0.690 0.995 0.033 12.32 6.03 6.29 3.08 DP 2.383 0.760 0.996 0.033 241.27 138.71 10.95 6.29 YN 1.146 0.572 0.985 0.053 14.00 5.22 30.99 11.56 BPA YP 1.424 0.801 0.985 0.067 26.52 16.77 13.68 8.65 YD 1.228 0.707 0.977 0.072 16.91 8.61 8.71 4.43 MN 1.892 0.497 0.987 0.050 78.02 24.51 29.30 9.20 MP 2.258 0.483 0.980 0.062 181.05 55.03 92.46 28.10 DP 2.533 0.806 0.986 0.064 341.27 218.17 15.48 9.90 a lg KF的单位为[(mg·kg−1)/(mg·L−1)n];b SEE为标准估计误差;r2adj为可调可决系数。 -
[1] LI J, ZHENG L, WANG S L, et al. Sorption mechanisms of lead on silicon-rich biochar in aqueous solution: spectroscopic investigation [J]. Science of the Total Environment, 2019, 672: 572-582. doi: 10.1016/j.scitotenv.2019.04.003 [2] LEE E H, LEE S K, KIM M J, et al. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor [J]. Food Chemistry, 2019, 287: 205-213. doi: 10.1016/j.foodchem.2019.02.079 [3] RWEI S P, KAO S C, LIOU G S, et al. Curing and pyrolysis of epoxy resins containing 2-(6-oxido-6 H -dibenz (c, e )(1, 2)oxaphosphorin-6-yl)-1, 4-naphthalenediol or bisphenol S [J]. Colloid and Polymer Science, 2003, 281(5): 407-415. doi: 10.1007/s00396-002-0787-8 [4] YANG T, WANG L, LIU Y, et al. Comparative study on ferrate oxidation of BPS and BPAF: Kinetics, reaction mechanism, and the improvement on their biodegradability [J]. Water Research, 2019, 148: 115-125. doi: 10.1016/j.watres.2018.10.018 [5] LIAO C, KANNAN K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure [J]. J Agric Food Chem, 2013, 61(19): 4655-4622. doi: 10.1021/jf400445n [6] LIAO C, KANNAN K. A Survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States [J]. Archives of Environmental Contamination and Toxicology, 2014, 67(1): 50-59. doi: 10.1007/s00244-014-0016-8 [7] NADERI M, WONG M Y L, GHOLAMI F. Developmental exposure of zebrafish (danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults [J]. Aquat Toxicol, 2014, 148: 195-203. doi: 10.1016/j.aquatox.2014.01.009 [8] GU J, ZHANG J, CHEN Y, et al. Neurobehavioral effects of bisphenol S exposure in early life stages of zebrafish larvae (Danio rerio) [J]. Chemosphere, 2019, 217: 629-635. doi: 10.1016/j.chemosphere.2018.10.218 [9] 王子莹, 金洁, 张哲赟, 等. 土壤和沉积物中有机质对双酚A和17α-乙炔基雌二醇的吸附行为 [J]. 环境化学, 2012, 31(5): 625-630. WANG Z Y, JIN J, ZHANG Z, et al. Sorption of 17α-ethinyl estradiol and bisphenol A by different soil/sediment organic matter fractions [J]. Environmental Chemistry, 2012, 31(5): 625-630(in Chinese).
[10] CHOI Y J, LEE L S. Partitioning behavior of bisphenol alternatives BPS and BPAF compared to BPA [J]. Environmental Science & Technology, 2017, 51(7): 3725-3732. [11] SUN K, KANG M, ZHANG Z, et al. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene [J]. Environmental Science & Technology, 2013, 47(20): 11473-11481. [12] 沈杰, 刘建超, 陆光华, 等. 双酚S和双酚F在水环境中的分布、毒理效应及其生态风险研究进展 [J]. 生态毒理学报, 2018, 13(5): 37-48. doi: 10.7524/AJE.1673-5897.20171009001 SHEN J, LIU J C, LU G H, et al. A review of the occurrence, toxicology and ecological risk assessment of bisphenol S and F in aquatic environment [J]. Asian Journal of Ecotoxicology, 2018, 13(5): 37-48(in Chinese). doi: 10.7524/AJE.1673-5897.20171009001
[13] 黄晓妍, 裴志国, 罗磊, 等. 双酚S在两种典型地带性土壤中的吸附/解吸行为研究 [J]. 环境科学学报, 2020, 40(4): 1452-1459. HUANG X Y, PEI Z G, LUO L, et al. Sorption and desorption of bisphenol S in two typical zonal soils [J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1452-1459(in Chinese).
[14] ABDOLLAHI L, SCHJONNING P, ELMHOLT S, et al. The effects of organic matter application and intensive tillage and traffic on soil structure formation and stability [J]. Soil & Tillage Research, 2014, 136: 28-37. [15] GUO H, LI H, LIANG N, et al. Structural benefits of bisphenol S and its analogs resulting in their high sorption on carbon nanotubes and graphite [J]. Environmental Science and Pollution Research, 2016, 23(9): 8976-8984. doi: 10.1007/s11356-016-6040-7 [16] HOU J, PAN B, NIU X, et al. Sulfamethoxazole sorption by sediment fractions in to comparison pyrene and bisphenol A [J]. Environ Pollut, 2010, 158: 2826-2832. doi: 10.1016/j.envpol.2010.06.023 [17] YU G. Root exudates and microbial communities drive mineral dissolution and the formation of nano-size minerals in soils: Implications for Soil Carbon Storage [M]. Berlin : Springer , 2018. [18] DREVER J I, STILLINGS L L. The role of organic acids in mineral weathering [J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1997, 120(1/3): 167-181. [19] 李浩成, 左应梅, 杨绍兵, 等. 三七根系分泌物在连作障碍中的生态效应及缓解方法 [J]. 中国农业科技导报, 2020, 22(8): 159-167. LI H C, ZUO Y M, YANG S B, et al. Ecological effects and mitigation methods of panax notoginseng root exudates in continuous cropping obstacles [J]. Journal of Agricultural Science and Technology, 2020, 22(8): 159-167(in Chinese).
[20] KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates [J]. Nature Climate Change, 2015, 5(6): 588-595. doi: 10.1038/nclimate2580 [21] ZHOU D, CHEN B, WU M, et al. Ofloxacin sorption in soils after long-term tillage:The contribution of organic and mineral compositions [J]. Science of the Total Environment, 2014, 497: 665-670. [22] PIGNATELLO J J, SEOKJOON KWON A, LU Y. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids [J]. Environ Sci Technol, 2006, 40(24): 7757-7763. doi: 10.1021/es061307m [23] DRILLIA P, STAMATELATOU K, LYBERATOS G. Fate and mobility of pharmaceuticals in solid matrices [J]. Chemosphere, 2005, 60(8): 1034-1044. doi: 10.1016/j.chemosphere.2005.01.032 [24] GUNASEKARA A S, SIMPSON M J, XING B S. Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids [J]. Environmental Science & Technology, 2003, 37(5): 852-858. [25] ZHAO X, ARSHAD M, LI N, et al. Determination of the optimal mathematical model, sample size, digital data and transect spacing to map CEC (Cation exchange capacity) in a sugarcane field [J]. Computers and Electronics in Agriculture, 2020, 173: 105436. doi: 10.1016/j.compag.2020.105436 [26] 张继光, 秦江涛, 要文倩, 等 长期施肥对红壤旱地土壤活性有机碳和酶活性的影响 [J]. 土壤, 2010, 42(3): 364-371. ZHANG J G, QIN J T, YAO W Q, et al. Effects of long-term fertilization on soil active organic carbon and soil enzyme. activities in upland red soils[J]. Soil, 2010, 42(3): 364-371 (in Chinese).
[27] MADER B T, UWEGOSS K, EISENREICH S J. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces [J]. Environmental Science & Technology, 1997, 31(4): 1079-1086. [28] VOICE T C, WEBER W J. Sorption of hydrophobic compounds by sediments, soils and suspended solids—I. Theory and background [J]. Water Research, 1983, 17(10): 1433-1441. doi: 10.1016/0043-1354(83)90275-0 [29] ZHU D, PIGNATRLLO J. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model [J]. Environmental science & Technology, 2005, 39(7): 2033-2041. [30] ZHU D Q, HYUN S H, PIGNATELLO J J, et al. Evidence for pi-pi electron donor-acceptor interactions between pi-donor aromatic compounds and pi-acceptor sites in soil organic matter through pH effects on sorption [J]. Environmental Science & Technology, 2004, 38(16): 4361-4368. [31] SENESI N. Binding mechanisms of pesticides to soil humic substances [J]. The Science of the total environment, 1992, 123/124: 63-76. doi: 10.1016/0048-9697(92)90133-D [32] 李祖然, 闵强, 孙晶晶, 等. As胁迫对二年生三七生长、根部As含量和根系分泌物的影响 [J]. 北京农学院学报, 2015, 30(3): 86-91. LI Z R, MIN Q,SUN J J, et al. Effect of As stress on the growth, the root As contents and root exudates in 2-year-old Panax notoginseng [J]. Journal of Beijing University of Agriculture, 2015, 30(3): 86-91(in Chinese).