-
随着社会的快速发展,塑料制品被广泛应用于人们的工作与日常生活. 据研究,2015年全球塑料产量达到3.0×108 t[1]中国作为世界最大的塑料消费国之一,每年消耗塑料可达8000万t,然而其中只有30%被回收利用[2]. 大部分不可回收的塑料会通过焚烧或者丢弃的途径进入到环境中[3],而塑料难以被降解的特性会使其造成严重的环境污染[4]. 微塑料是由块状塑料在环境中破碎而来,通常是指直径小于5 mm塑料纤维、颗粒或者薄膜[5]. Su等的研究表明,太湖中微塑料丰度达0.01×106—6.8×106个·km−2[6]. 微塑料的漂浮性、耐腐蚀性、吸附性[7]使其不管是悬浮在海水中还是沉淀在沉积物中,都比普通塑料碎片要更加有害. 如在海洋中,微塑料会吸附有机污染物(如多氯联苯、壬基苯酚等)或无机污染物(汞、铅和锌等),这使其除了自身携带的有毒添加剂外,又负载了环境中的有毒污染物,导致微塑料整体毒性大大增加[8]. 一旦微塑料被生物误食或携带,就会将污染物通过食物链逐级传递,从而在生物体内富集,最终危害人类健康[9]. Evangeliou等的研究表明,大量累积的微塑料可能会加速北极冰雪圈的升温和融化[10]. 因此,需要有效的措施来减轻微塑料对水体环境的危害.
环境中常见的微塑料处理方法有物理法、生物降解法、化学法等[11]. 物理法主要有吸附、混凝、絮凝等[12-13]. 化学法包括化学吸附,光催化降解等[14-15]. 而生物降解法是通过生物分解这一过程以减少环境中微塑料含量[16]. 但是这些方法也存在一些局限性,如物理混凝与微塑料缺少表面相互作用而会导致其去除率较低(不到10%)[17]. 光催化对微塑料的降解并不完全[18]. 而生物降解通常需要较长的时间[19]. 因此在综合考虑成本和技术难度的情况下,吸附法是较为有潜力的一种微塑料去除方式.
生物炭是一种水环境中常用的吸附剂,它是由有机物在缺氧环境下热解而成[20-21]. 生物炭具有高表面积和微孔性,可以将污染物从水中吸附到自身上[22-23]. 生物炭的制备材料来源广泛,不同原料制成的生物炭在pH、灰分、比表面积、孔径等性质上均可能存在巨大的差异[24-25],从而影响生物炭的吸附性能. 此外,环境pH、吸附时间、初始污染物浓度等外部因素也会影响生物炭的吸附能力[26-27]. 然而有关不同种类生物炭对于微塑料吸附性能以及生物炭中检测微塑料的技术手段也在研究阶段.
本研究旨在探究不同原料制备的生物炭对微塑料吸附的性能差异,并尝试探索一种新的微塑料定量检测方法,以此为水环境中的微塑料污染修复提供新的思路和依据. 本研究采用污泥炭,玉米秸秆炭,梧桐皮炭的3种生物炭对比分析不同吸附时间,不同Cl−浓度干扰,不同pH情况下生物炭对微塑料PET(聚对苯二甲酸乙二醇酯)的吸附情况,采用拉曼光谱、衰减全反射红外光谱(ATR-IR)、扫描电镜(SEM)、热重分析等技术手段创新性验证生物炭对微塑料的吸附效果.
不同类型生物炭对水体中微塑料的吸附性能
Sorption properties of microplastics in water by different types of biochar
-
摘要: 微塑料自生的毒性和富集作用会极大地危害生物健康. 不同原材料,生物炭结构组成不同,吸附特性也不一样. 探究不同类型生物炭对微塑料的吸附性能及吸附机理,有助于为生物炭吸附去除水体中微塑料的材料选择提供理论依据.本研究使用3种有机废弃物制备成的生物炭(污泥炭,秸秆炭,梧桐皮炭)对微塑料PET(6.5 μm)进行吸附试验,通过比表面积和孔径分析、衰减全反射红外光谱、拉曼光谱、湿筛法-热重联用分析法多种技术手段分别定性和定量研究不同反应时间、不同Cl−浓度和溶液初始pH对生物炭吸附微塑料的影响. 研究结果证实生物炭上存在明显的微塑料,吸附动力学研究表明准一级方程能更好的描述生物炭对微塑料的吸附过程,证明3种生物炭对于微塑料的吸附以物理吸附为主,吸附分别在5—10 h时达到平衡. 3种生物炭吸附能力大小为梧桐皮炭=污泥炭>秸秆炭. 生物炭对微塑料的吸附量均随着pH的升高先升高(pH3—7)后降低(pH7—11). 此外,Cl−浓度对生物炭吸附微塑料影响较小. 随着微塑料浓度提升,3种生物炭吸附微塑料的量均有提高.生物炭的平均孔径和比表面积是影响其吸附微塑料的主要原因. 另外,本研究创新的湿筛-热重联用分析法由于减少了实验过程中破碎生物炭的影响,比热重分析法更加准确定量检测微塑料.Abstract: The toxicity and enrichment of microplastics themselves will greatly harm biological health. Different raw materials lead to different structure and composition of biochar, so its adsorption characteristics are different. To explore the adsorption properties and mechanism of different types of biochar on microplastics, it can provide theoretical basis for the selection of materials for the adsorption and removal of microplastics from water by biochar. In this study, biochar prepared from three kinds of organic wastes (Sludge biochar, Straw biochar, and Sycamore bark biochar) was used to adsorb PET (6.5 μm) of microplastics. The effects of different reaction time, different Cl− concentration and solution initial pH on biochar adsorption of microplastic were qualitatively and quantitatively studied by using specific surface area and pore size analysis, attenuated total reflection infrared spectroscopy, Raman spectroscopy and wet sieve-thermogravimetric analysis. The results confirmed the presence of significant microplastics on biochar. The adsorption kinetics study shows that the pseudo first order equation can better describe the adsorption process of micro plastics on biochar, it was proved that the adsorption of the three kinds of biochar on microplastics was mainly physical adsorption, and the adsorption reached equilibrium at 5—10 h respectively. The adsorption capacity of the three biochar was as follows: Indus bark biochar=sludge biaochr and > straw bichar. The adsorption capacity of biochar on microplastics increased first pH(3—7) and then decreased with the increase of pH (7—11). Furthermore, Cl− concentration has little effect on biochar adsorption of microplastics. When the concentration of microplastics increased, the amount of microplastics adsorbed by the three kinds of biochar increased. The average pore size and specific surface area of biochar are the main factors affecting the adsorption of microplastics. In addition, the innovative wet sieve-thermogravimetric analysis method in this study is more accurate than thermogravimetric analysis in quantitative detection of microplastics because it reduces the impact of broken biochar in the experimental process.
-
Key words:
- biochar /
- microplastics /
- wet sieving /
- thermogravimetric analysis /
- physical adsorption
-
表 1 生物炭孔隙结构特征
Table 1. Pore structure characteristics of biochar
生物炭
Biochar比表面积/(m2·g−1)
BET平均孔径/nm
Average pore size总孔隙体积/(cm3·g−1)
Total pore volume污泥炭 21.660 3.189 0.056 秸秆炭 16.320 0.725 0.016 梧桐皮炭 176.350 1.800 0.051 表 2 不同生物炭吸附微塑料动力学参数
Table 2. Kinetic parameters of different biochar adsorption microplastics
准一级模型参数 生物炭Biochar qe /(mg·g−1) k1 /(min−1) R2 Parameter of quasi-first order model 污泥炭 0.008 0.553 0.832 秸秆炭 0.004 0.514 0.709 梧桐皮炭 0.008 0.727 0.845 准二级模型参数 生物炭Biochar qe /(mg·g−1) k2 /(mg·min)−1) R2 Quasi-second order model parameters 污泥炭 0.009 0.658 0.832 秸秆炭 0.004 0.386 0.679 梧桐皮炭 0.009 0.518 0.689 表 3 热重分析法和热重-湿筛联合分析法对比
Table 3. Comparison of thermogravimetric analysis and combined thermogravimetric and wet-screen analysis
方法
Method生物炭种类
Species of biochar吸附微塑料的重量/mg
Weight of the adsorbed microplastics热重分析法
Thermogravimetric analysis污泥炭 0.53±0.13 秸秆炭 0.38±0.09 梧桐皮炭 1.44±0.11 热重-湿筛联合分析法
Combined thermogravimetric and wet-screen analysis污泥炭 0.40±0.07 秸秆炭 0.31±0.06 梧桐皮炭 1.26±0.03 -
[1] CHEN X, YAN N. A brief overview of renewable plastics [J]. Materials Today Sustainability, 2020, 7/8: 100031. doi: 10.1016/j.mtsust.2019.100031 [2] WANG G, WANG J S, XUE Q G. Efficient utilization of waste plastics as raw material for metallic iron and syngas production by combining heat treatment pulverization and direct reduction [J]. Process Safety and Environmental Protection, 2020, 137: 49-57. doi: 10.1016/j.psep.2020.02.017 [3] CHEN Y D, CUI Z J, CUI X W, et al. Life cycle assessment of end-of-life treatments of waste plastics in China [J]. Resources, Conservation and Recycling, 2019, 146: 348-357. doi: 10.1016/j.resconrec.2019.03.011 [4] 江秀萍. 海洋微塑料的来源及其危害 [J]. 南方农机, 2019, 50(15): 276-277. JIANG X P. Source and harm of marine microplastics [J]. China Southern Agricultural Machinery, 2019, 50(15): 276-277(in Chinese).
[5] EGESSA R, NANKABIRWA A, OCAYA H, et al. Microplastic pollution in surface water of Lake Victoria [J]. Science of the Total Environment, 2020, 741: 140201. doi: 10.1016/j.scitotenv.2020.140201 [6] SU L, XUE Y G, LI L Y, et al. Microplastics in Taihu lake, China [J]. Environmental Pollution, 2016, 216: 711-719. doi: 10.1016/j.envpol.2016.06.036 [7] ROCHMAN C M, BROWNE M A, HALPERN B S, et al. Classify plastic waste as hazardous [J]. Nature, 2013, 494(7436): 169-171. doi: 10.1038/494169a [8] 赵淑江, 王海雁, 刘健. 微塑料污染对海洋环境的影响 [J]. 海洋科学, 2009, 33(3): 84-86. ZHAO S J, WANG H Y, LIU J. Influence of microplastics pollution on marine environment [J]. Marine Sciences, 2009, 33(3): 84-86(in Chinese).
[9] MOORE C J, MOORE S L, LEECASTER M K, et al. A comparison of plastic and plankton in the north Pacific central gyre [J]. Marine Pollution Bulletin, 2001, 42(12): 1297-1300. doi: 10.1016/S0025-326X(01)00114-X [10] EVANGELIOU N, GRYTHE H, KLIMONT Z, et al. Atmospheric transport is a major pathway of microplastics to remote regions [J]. Nature Communications, 2020, 11: 3381. doi: 10.1038/s41467-020-17201-9 [11] 刘江峡, 刘欢, 刘清泉, 等. 多层级孔材料及水体微塑料处理的研究进展 [J]. 合成材料老化与应用, 2020, 49(2): 103-108. LIU J X, LIU H, LIU Q Q, et al. Research progress of hierarchical porous materials and treatment of water micro-plastics pollution [J]. Synthetic Materials Aging and Application, 2020, 49(2): 103-108(in Chinese).
[12] 袁芳, 岳灵芝, 周俊, 等. 一种采用三维石墨烯吸附水中聚苯乙烯微塑料的方法: CN110559995A[P]. 2019-12-13. YUAN F, YUE L Z, ZHOU J, et al. Method for adsorbing polystyrene microplastics in water by adopting three-dimensional graphene: CN110559995A[P]. 2019-12-13(in Chinese).
[13] RAJALA K, GRÖNFORS O, HESAMPOUR M, et al. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals [J]. Water Research, 2020, 183: 116045. doi: 10.1016/j.watres.2020.116045 [14] ARIZA-TARAZONA M C, VILLARREAL-CHIU J F, BARBIERI V, et al. New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor [J]. Ceramics International, 2019, 45(7): 9618-9624. doi: 10.1016/j.ceramint.2018.10.208 [15] 徐擎擎, 张哿, 邹亚丹, 等. 微塑料与有机污染物的相互作用研究进展 [J]. 生态毒理学报, 2018, 13(1): 40-49. XU Q Q, ZHANG G, ZOU Y D, et al. Interactions between microplastics and organic pollutants: Current status and knowledge gaps [J]. Asian Journal of Ecotoxicology, 2018, 13(1): 40-49(in Chinese).
[16] KARIM M E, SANJEE S A, MAHMUD S, et al. Microplastics pollution in Bangladesh: Current scenario and future research perspective [J]. Chemistry and Ecology, 2020, 36(1): 83-99. doi: 10.1080/02757540.2019.1688309 [17] LAPOINTE M, FARNER J M, HERNANDEZ L M, et al. Understanding and improving microplastic removal during water treatment: Impact of coagulation and flocculation [J]. Environmental Science & Technology, 2020, 54(14): 8719-8727. [18] ARIZA-TARAZONA M C, VILLARREAL-CHIU J F, HERNÁNDEZ-LÓPEZ J M, et al. Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process [J]. Journal of Hazardous Materials, 2020, 395: 122632. doi: 10.1016/j.jhazmat.2020.122632 [19] ZHANG X L, CHEN J X, LI J. The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association [J]. Chemosphere, 2020, 251: 126360. doi: 10.1016/j.chemosphere.2020.126360 [20] 孟莉蓉, 俞浩丹, 杨婷婷, 等. 2种生物炭对Pb、Cd污染土壤的修复效果 [J]. 江苏农业学报, 2018, 34(4): 835-841. MENG L R, YU H D, YANG T T, et al. Immobilization of two biochars to Pb, Cd in contaminated soils [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 835-841(in Chinese).
[21] 顾博文, 曹心德, 赵玲, 等. 生物质内源矿物对热解过程及生物炭稳定性的影响 [J]. 农业环境科学学报, 2017, 36(3): 591-597. GU B W, CAO X D, ZHAO L, et al. Influence of inherent minerals on biomass pyrolysis and carbon stability in biochar [J]. Journal of Agro-Environment Science, 2017, 36(3): 591-597(in Chinese).
[22] YANG X B, YING G G, PENG P A, et al. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil [J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7915-7921. doi: 10.1021/jf1011352 [23] YU X Y, YING G G, KOOKANA R S. Reduced plant uptake of pesticides with biochar additions to soil [J]. Chemosphere, 2009, 76(5): 665-671. doi: 10.1016/j.chemosphere.2009.04.001 [24] 彭启超, 刘小华, 罗培宇, 等. 不同原料生物炭对氮、磷、钾的吸附和解吸特性 [J]. 植物营养与肥料学报, 2019, 25(10): 1763-1772. PENG Q C, LIU X H, LUO P Y, et al. Adsorption and desorption characteristics of nitrogen, phosphorus and potassium by biochars from different raw materials [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1763-1772(in Chinese).
[25] 宋婷婷, 李洁, 张贵龙, 等. 不同原料生物炭对水体硝态氮的吸附性能研究[J]. 生态环境学报, 2018, 27(2): 330-340 SONG T T, LI J, ZHANG G L, et al. Study on the adsorption capacity of different raw materials biochar for nitrate nitrogen in water. Journal of Ecology and Environment, 2018, 27(2): 330-340.
[26] 孙耀胜, 么强, 刘竞依, 等. 生物炭材料在水体有机污染治理中的研究进展 [J]. 环境科学与技术, 2021, 44(1): 170-180. SUN Y S, YAO Q, LIU J Y, et al. Research progress of biochar materials in treatment of organic pollution in water [J]. Environmental Science & Technology, 2021, 44(1): 170-180(in Chinese).
[27] 刘凌言, 陈双荣, 宋雪燕, 等. 生物炭吸附水中磷酸盐的研究进展 [J]. 环境工程, 2020, 38(11): 91-97. LIU L Y, CHEN S R, SONG X Y, et al. Research progress in removal of phosphate from water by biochar [J]. Environmental Engineering, 2020, 38(11): 91-97(in Chinese).
[28] 王昆, 林坤德, 袁东星. 环境样品中微塑料的分析方法研究进展 [J]. 环境化学, 2017, 36(1): 27-36. WANG K, LIN K D, YUAN D X. Research progress on the analysis of microplastics in the environment [J]. Environmental Chemistry, 2017, 36(1): 27-36(in Chinese).
[29] SUN J, DAI X H, WANG Q L, et al. Microplastics in wastewater treatment plants: Detection, occurrence and removal [J]. Water Research, 2019, 152: 21-37. doi: 10.1016/j.watres.2018.12.050 [30] 王俊豪, 梁荣宁, 秦伟. 海洋微塑料检测技术研究进展 [J]. 海洋通报, 2019, 38(6): 601-612. WANG J H, LIANG R N, QIN W. Review of analytical methods for detecting microplastics in the ocean [J]. Marine Science Bulletin, 2019, 38(6): 601-612(in Chinese).
[31] 中华人民共和国国家质量监督检验检疫总局. 中华人民共和国推荐性国家标准: 土工布及其有关产品有效孔径的测定 湿筛法 GB/T 17634—1998[S]. 北京: 中国标准出版社, 1999. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. National Standard (Recommended) of the People's Republic of China: Geotextiles and geotextile-related products-Determination of the characteristic opening size-Wet sieving method. GB/T 17634—1998[S]. Beijing: Standards Press of China, 1999(in Chinese).
[32] GONG H B, TAN Z X, ZHANG L M, et al. Preparation of biochar with high absorbability and its nutrient adsorption-desorption behaviour [J]. Science of the Total Environment, 2019, 694: 133728. doi: 10.1016/j.scitotenv.2019.133728 [33] 张国胜, 程红艳, 张海波, 等. 双孢菇菌糠生物炭吸附Pb2+机制及其环境应用潜力 [J]. 农业环境科学学报, 2021, 40(3): 659-667. ZHANG G S, CHENG H Y, ZHANG H B, et al. Adsorption mechanism of Pb2+ in water by biochar derived from spent Agaricus bisporus substrate and its environmental application potential [J]. Journal of Agro-Environment Science, 2021, 40(3): 659-667(in Chinese).
[34] LI X N, JIANG X, SONG Y, et al. Coexistence of polyethylene microplastics and biochar increases ammonium sorption in an aqueous solution [J]. Journal of Hazardous Materials, 2021, 405: 124260. doi: 10.1016/j.jhazmat.2020.124260 [35] 刘海朱, 王隽媛, 路思远, 等. 微塑料对有机污染物的吸附及微塑料-有机物复合污染的毒性研究进展 [J]. 环境生态学, 2020, 2(12): 89-94. LIU H Z, WANG J Y, LU S Y, et al. Research progress on adsorption of organic pollutants by microplastics and toxicity of microplastic-organic compound pollution [J]. Environmental Ecology, 2020, 2(12): 89-94(in Chinese).