排水管道内不同粒径沉积颗粒物冲刷率的分析与计算

周敬钦, 刘翠云, 周俊, 陈妍之, 王易扬, 周婕. 排水管道内不同粒径沉积颗粒物冲刷率的分析与计算[J]. 环境化学, 2021, (3): 896-903. doi: 10.7524/j.issn.0254-6108.2020071402
引用本文: 周敬钦, 刘翠云, 周俊, 陈妍之, 王易扬, 周婕. 排水管道内不同粒径沉积颗粒物冲刷率的分析与计算[J]. 环境化学, 2021, (3): 896-903. doi: 10.7524/j.issn.0254-6108.2020071402
ZHOU Jingqin, LIU Cuiyun, ZHOU Jun, CHEN Yanzhi, WANG Yiyang, ZHOU Jie. Analysis and calculation on the scouring rate of deposited particles with different sizes in drainage pipe[J]. Environmental Chemistry, 2021, (3): 896-903. doi: 10.7524/j.issn.0254-6108.2020071402
Citation: ZHOU Jingqin, LIU Cuiyun, ZHOU Jun, CHEN Yanzhi, WANG Yiyang, ZHOU Jie. Analysis and calculation on the scouring rate of deposited particles with different sizes in drainage pipe[J]. Environmental Chemistry, 2021, (3): 896-903. doi: 10.7524/j.issn.0254-6108.2020071402

排水管道内不同粒径沉积颗粒物冲刷率的分析与计算

    通讯作者: 刘翠云, E-mail: yunduobai@126.com 周俊, E-mail: zhoujun0913@126.com
  • 基金项目:

    国家自然科学基金(51808285)资助.

Analysis and calculation on the scouring rate of deposited particles with different sizes in drainage pipe

    Corresponding authors: LIU Cuiyun, yunduobai@126.com ;  ZHOU Jun, zhoujun0913@126.com
  • Fund Project: Supported by National Natural Science Foundation of China (51808285).
  • 摘要: 为探究和量化在水流冲刷下,排水管道中不同粒径颗粒物冲刷沉积的过程,本文模拟排水管道内沉积颗粒的冲刷过程.冲刷过程中,粒径较小的悬移质颗粒(小于0.1 mm),在管道沿线取样测得水流中悬浮固体质量浓度(SS);粒径较大的推移质颗粒(0.1—2 mm),测得管道沿线不同位置沉积的颗粒质量.并建立两个数学模型分别计算排水管道内两类颗粒物的冲刷率.研究发现,悬移质颗粒,以水流中SS为依据,可计算出输送通量和冲刷率;推移质颗粒,以管道不同位置沉积下来的颗粒质量为依据,拟合出了管道中的沉积分布函数,是以e为底数的指数函数,可计算出冲刷量和冲刷率.模型计算出的冲刷率呈现出规律性:悬移质颗粒被冲刷成悬浮状态,随水流迁移过程中部分会再次沉积,使得悬移质颗粒的冲刷率从管道前段至中后段逐步降低,如初始沉积质量为100 g的0.045 mm悬移质颗粒,在0.30 m·s-1的冲刷流速下,计算出管道前段冲刷率为78.94%,最终在管道后段降至13.89%;对于两类颗粒而言,颗粒物粒径越小,冲刷流速越大,初始沉积质量越小,冲刷率越高.
  • 加载中
  • [1] 桑浪涛, 石烜, 张彤, 等. 城市污水管网中污染物冲刷与沉积规律[J]. 环境科学,2017, 38(5):1965-1971.

    SANG L T, SHI X, ZHANG T, et al. Law of pollutant erosion and deposition in urban sewage network[J]. Environmental Science, 2017, 38(5):1965-1971(in Chinese).

    [2] 李海燕, 苏豪儒, 黄延. 城市合流排水管道水沉积物界面污染研究进展[J]. 水利水电科技进展,2013, 33(3):84-88.

    LI H Y, SU H R, HUANG Y. Research progress on the pollutant from the water sediment interface in urban combined drainage pipes[J]. Advances in Science and Technology of Water Resources, 2013, 33(3):84-88(in Chinese).

    [3] 陈珂莉, 李朋, 金伟, 等. 排水管道沉积物中胞外聚合物的提取及检测方法研究[J]. 中国给水排水,2018, 34(7):32-36.

    CHEN K L, LI P, JIN W, et al. Extraction and detection method of extracellular polymeric substances (eps) in sediment of sewage system[J]. China Water & Wastewater, 2018, 34(7):32-36(in Chinese).

    [4] 尚宇, 周毅, 廖安意, 等. 雨水管道沉积物沉淀特性及主要污染物含量分布[J]. 环境科学,2018, 39(8):3696-3703.

    SHANG Y, ZHOU Y, LIAO A Y, et al. Sedimentation characteristics and pollutant content distribution of storm drainage sediments[J]. Environmental Science, 2018, 39(8):3696-3703(in Chinese).

    [5] MURALI M K, HIPSEY M R, GHADOUANI A, et al. The development and application of improved solids modelling to enable resilient urban sewer networks[J]. Journal of Environmental Management, 2019, 240:219-230.
    [6] 杨云安, 管运涛, 许光明, 等. 老城区不同功能区排水管道沉积物性质研究[J]. 给水排水,2011, 47(9):159-162.

    YANG Y A, GUAN Y T, XU G M, et al. Study on sediment properties of drainage pipes in different functional areas of the old city[J]. Water & Wastewater Engineering, 2011, 47(9):159-162(in Chinese).

    [7] 钱栋. 生物作用下排水管道沉积物起动规律研究[D]. 杭州:浙江大学, 2017. QIAN D. Study on laws for the incipient motion of sewer sediments with biological active[D]. Hangzhou:Zhejiang University, 2017(in Chinese).
    [8] BUTLER D, MAY R, ACKERS J. Self-cleansing sewer design based on sediment transport principles[J]. Journal of Hydraulic Engineering, 2003, 129(4):276-282.
    [9] EBTEHAJ I, BONAKDARI H. Assessment of evolutionary algorithms in predicting non-deposition sediment transport[J]. Urban Water Journal, 2016, 13(5):499-510.
    [10] QASEM S N, EBTEHAJ I, BONAKDARI H. Potential of radial basis function network with particle swarm optimization for prediction of sediment transport at the limit of deposition in a clean pipe[J]. Sustainable Water Resources Management, 2017, 3(4):391-401.
    [11] SAFARI M J S, DANANDEH MEHR A. Multigene genetic programming for sediment transport modeling in sewers for conditions of non-deposition with a bed deposit[J]. International Journal of Sediment Research, 2018, 33(3):262-270.
    [12] MANNING G, SCHELLART A, TAIT S, et al. Uncertainty in sewer sediment deposit modelling:Detailed vs simplified modelling approaches[J]. Physics and Chemistry of the Earth, 2012, 42/44:11-20.
    [13] LIU C Y, TAN S, ZHANG X H, et al. The research on the deposition regularity of suspended particles in storm sewer[J]. Water, Air and Soil Pollution, 2018, 229(3):61-66.
    [14] WU X L, WEI Y J, WANG J G, et al. Effects of erosion degree and rainfall intensity on erosion processes for Ultisols derived from quaternary red clay[J]. Agriculture, Ecosystems & Environment, 2017, 249:226-236.
    [15] MA Y K, HAO S N, ZHAO H T, et al. Pollutant transport analysis and source apportionment of the entire non-point source pollution process in separate sewer systems[J]. Chemosphere:Environmental Toxicology and Risk Assessment, 2018, 211:557-565.
    [16] HAO H X, WANG J G, GUO Z J, et al. Water erosion processes and dynamic changes of sediment size distribution under the combined effects of rainfall and overland flow[J]. Catena, 2019, 173:494-504.
    [17] SONG R P, HOU Y X, ZHANG Y P, et al. Salinity distribution and sediment flux in the estuarine xuanmen reservoir[J]. Water, Air, & Soil Pollution, 2020, 231(11):189-199.
    [18] 王建龙, 车伍, 李俊奇. 城市雨水径流中颗粒物冲刷迁移规律研究进展[J]. 中国给水排水,2012, 28(24):35-38.

    WANG J L, CHE W, LI J Q. Flushing and migration laws of particulate matters in urban stormwater runoff[J]. China Water & Wastewater, 2012, 28(24):35-38(in Chinese).

    [19] 刘翠云, 张效华, 杨钰婷, 等. 雨水管道沉积物冲刷特性[J]. 安全与环境学报,2019, 19(2):635-642.

    LIU C Y, ZHANG X H, YANG Y T, et al. Analysis of scouring features of sedimental left-over elements in rainwater pipes[J]. Journal of Safety and Environment, 2019, 19(2):635-642(in Chinese).

    [20] HAⅡNOUCHE A, CHEBBO G, JOANNIS C. Assessment of the contribution of sewer deposits to suspended solids loads in combined sewer systems during rain events[J]. Environmental Science and Pollution Research, 2014, 21(8):5311-5317.
    [21] 马美景, 王军光, 郭忠录, 等. 放水冲刷对红壤坡面侵蚀过程及溶质迁移特征的影响[J]. 土壤学报,2016, 53(2):365-374.

    MA M J, WANG J G, GUO Z L, et al. Research on sediment and solute transport on red soil slope under simultaneous influence of scouring flow[J]. Acta Pedologica Sinica, 2016, 53(2):365-374(in Chinese).

    [22] PHILLIPS C B, DALLMANN J D, JEROLMACK D J, et al. Fine-particle deposition, retention, and resuspension within a sand-bedded stream are determined by streambed morphodynamics[J]. Water Resources Research, 2019, 55(12):10303-10318.
    [23] 陈进军. 冲积河流沉积物粒径的变化特征及其影响因素分析[D]. 兰州:兰州大学, 2017. CHEN J J. Characteristics of sediment grain size and the influence factors in alluvial rivers[D]. Lanzhou:Lanzhou University, 2017(in Chinese).
    [24] 高明. 城市排水管道内污水两相流临界流速研究[D]. 重庆:重庆大学, 2006. GAO M. The research of the critical velocity of sewage flowing as two-phase fluid in city drainpipe[D].Chongqing:Chongqing University, 2006(in Chinese).
    [25] SHAHSAVARI G, ARNAUD-FASSETTA G, CAMPISANO A. A field experiment to evaluate the cleaning performance of sewer flushing on non-uniform sediment deposits[J]. Water Research:A Journal of the International Water Association, 2017, 118:59-69.
    [26] 范念念. 从单颗粒受力到群体运动特征的推移质研究[D]. 北京:清华大学, 2014. FAN N N. Bed load transport:From individual particle forces to transport behavior[D]. Beijing:Tsinghua University, 2014(in Chinese).
  • 加载中
计量
  • 文章访问数:  1514
  • HTML全文浏览数:  1514
  • PDF下载数:  37
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-07-14

排水管道内不同粒径沉积颗粒物冲刷率的分析与计算

    通讯作者: 刘翠云, E-mail: yunduobai@126.com ;  周俊, E-mail: zhoujun0913@126.com
  • 1. 南京工业大学城市建设学院, 南京, 211800;
  • 2. 南京工业大学江苏省工业节水减排重点实验室, 南京, 210009
基金项目:

国家自然科学基金(51808285)资助.

摘要: 为探究和量化在水流冲刷下,排水管道中不同粒径颗粒物冲刷沉积的过程,本文模拟排水管道内沉积颗粒的冲刷过程.冲刷过程中,粒径较小的悬移质颗粒(小于0.1 mm),在管道沿线取样测得水流中悬浮固体质量浓度(SS);粒径较大的推移质颗粒(0.1—2 mm),测得管道沿线不同位置沉积的颗粒质量.并建立两个数学模型分别计算排水管道内两类颗粒物的冲刷率.研究发现,悬移质颗粒,以水流中SS为依据,可计算出输送通量和冲刷率;推移质颗粒,以管道不同位置沉积下来的颗粒质量为依据,拟合出了管道中的沉积分布函数,是以e为底数的指数函数,可计算出冲刷量和冲刷率.模型计算出的冲刷率呈现出规律性:悬移质颗粒被冲刷成悬浮状态,随水流迁移过程中部分会再次沉积,使得悬移质颗粒的冲刷率从管道前段至中后段逐步降低,如初始沉积质量为100 g的0.045 mm悬移质颗粒,在0.30 m·s-1的冲刷流速下,计算出管道前段冲刷率为78.94%,最终在管道后段降至13.89%;对于两类颗粒而言,颗粒物粒径越小,冲刷流速越大,初始沉积质量越小,冲刷率越高.

English Abstract

参考文献 (26)

目录

/

返回文章
返回