-
FeⅢTA纳米复合薄膜,属于金属有机骨架结构材料(metal organic framework, MOF),一般定义为经过自组装方式由配位于单宁酸的铁离子组成的超分子网络结构[1]。在众多MOF材料中,FeⅢTA纳米薄膜具有绿色环保、比表面积高、金属活性位点丰富、循环利用性强、结构多样化、表面易修饰的优点,在光学、生物学、环境学的应用中极具竞争力。其中FeⅢTA纳米薄膜将金属铁离子赋予的特殊性能与单宁酸表面强粘附性结合在一起,在光化学催化、药物运输、疾病诊断治疗,能源存储、废水处理等领域具有广泛的应用前景[2-5]。
传统的MOF材料因自身局限性限制了应用领域,如ZIF系列骨架材料(zeolitie imidazalate framework)制备方法复杂、制备成本相对偏高、适用范围小;CPL系列骨架材(coordiation pillared-layer)循环使用率低、稳定性差且含有毒物质。近年来新型MOF材料FeⅢTA纳米薄膜因对环境友好、比表面积高、制备工艺简单等特点成为研究焦点。但这种研究目前还处于起步阶段。
本文归纳了以单宁酸(Tannic Acid)和铁离子(FeⅢ)作为原材料制备金属有机骨架材料的相关研究。简述了以单宁酸和金属铁离子作为研究对象,FeⅢTA纳米薄膜形成的装配途径和制备方法,以及在生物学和环境领域上FeⅢTA薄膜的具体应用;最后对FeⅢTA薄膜的发展前景进行展望,指出了FeⅢTA薄膜在今后应用中应着重解决的问题。
单宁酸-铁离子纳米薄膜的合成及应用现状
Synthesis and application of tannic acid - iron ion nano films
-
摘要: 单宁酸-铁离子纳米薄膜(FeIIITA薄膜)是由自然界中分布广泛的铁离子和单宁酸快速自组装形成的新型纳米材料,属于金属有机骨架结构材料(Metal Organic Framework ,MOF)。该类材料具有绿色环保、比表面积高、孔径大、制备过程简单、成本低、金属活性位点丰富、黏附性强等特点。与其他MOF材料相比,FeIIITA薄膜的绿色制备和降解过程使其在生物学、能源与环保领域显现出巨大的应用潜力。本文从FeIIITA薄膜的合成、组装途径、在生物学和环境领域的应用等方面综述了FeIIITA薄膜的研究进展。针对目前FeIIITA薄膜应用的不足提出研究建议,并对其在环境领域的发展趋势进行展望。
-
关键词:
- 单宁酸 /
- 表面涂层 /
- 金属有机骨架结构材料 /
- 纳米薄膜 /
- 环境领域
Abstract: Tannic acid - iron nano films (FeIIITA films) self-assembled of iron ions and tannic acid is a new type of Metal Organic Framework (MOF) materials with high specific surface area, large pore size, simple preparation process, low cost, rich active sites, strong adhesion and so on. Compared with other MOF materials, due to its green environment-friendly preparation and degradation process, FeIIITA thin films have found important applications in the fields of photocatalysis ,biology, environmental protection, and etc. In this article review, we have summarized the research progress of FeIIITA thin films in terms of its synthesis and assembly pathways, as well as its current applications in biological and environmental fields. Based on the current research status, the research suggestions are put forward.-
Key words:
- tannic acid /
- surface coating /
- metal organic framework(MOF) /
- nano films /
- environmental application
-
表 1 FeⅢTA薄膜的制备方法对比
Table 1. Comparison of preparation methods of FeⅢTA films
制备方法
Preparation methods缺点
Disadvantages优点
Advantages颗粒基质成膜 耗时长、合成量少 工艺成熟、反应条件温和 平面基底成膜 耗时长、需大量溶剂、原材料单一 无污染、反应条件温和 球磨方式成膜 需高机械能、成本高 无溶剂、产量高、简单快捷 -
[1] DAI Y, CHENG S, WANG Z, et al. Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles [J]. ACS Nano, 2018, 12(1): 455-463. doi: 10.1021/acsnano.7b06852 [2] EJIMA H, RICHARDSON J J, LIANG K, et al. One-step assembly of coordination complexes for versatile film and particle engineering [J]. Science, 2013, 341(6142): 154-157. doi: 10.1126/science.1237265 [3] CHEETHAM A K, RAO C N R, FELLER R K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials [J]. Chem Commun, 2006, 46: 4780-4795. [4] NGUYEN T T, FURUKAWA H, FELIPE G, et al. Back cover: selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks [J]. Angewandte Chemie International Edition, 2014, 53(40): 10645-10648. doi: 10.1002/anie.201403980 [5] DAS P, YURAN S, YAN J, et al. Sticky tubes and magnetic hydrogels co-assembled by a short peptide and melanin-like nanoparticles [J]. Chem Commun, 2015, 51(25): 5432-5435. doi: 10.1039/C4CC07671K [6] 兰欣, 汪东风, 徐莹, 张旭鹏. 食品中酚类成分及其与其它成分相互作用研究进展[J]. 食品与机械2012, 28(3): 250-254. LAN X, WANG F F, XU Y, ZHANG X P. Advances in studies on phenolic compounds in food and their interactions with other compounds [J]. Food and Machinery 2012, (3): 250-254(in Chinese).
[7] 付伟, 吴子龙, 耿霄, 张浩. 单宁酸生物学功能及其应用前景 [J]. 饲料研究, 2019, 42(11): 108-111. FU W, WU Z L, GENG X, ZHANG H. biological function and application prospect of tannic acid [J]. Feed research, 2019, 42(11): 108-111(in Chinese).
[8] MAIER G P, RAPP M V, WAITE J H, et al. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement [J]. Science, 2015, 349(6248): 628-632. doi: 10.1126/science.aab0556 [9] XIE Y, YAN B, XU H, et al. Highly Regenerable Mussel-Inspired Fe3O4@Polydopamine-Ag Core-Shell Microspheres as Catalyst and Adsorbent for Methylene Blue Removal [J]. Acs Applied Materials & Interfaces, 2014, 6(11): 8845-8852. [10] GUO J, PING Y, EJIMA H, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks [J]. Angewandte Chemie, 2014, 53(22): 5546‐5551. [11] GEISLER S, BARRANTES A, TENGVALL P, et al. Deposition kinetics of bioinspired phenolic coatings on titanium surfaces. [J]. Langmuir, 2016, 32(32): 8050-8060. doi: 10.1021/acs.langmuir.6b01959 [12] SHEN Y, DU C, ZHOU J, et al. Application of nano FeIII-tannic acid complexes in modifying aqueous acrylic latex for controlled-release coated urea [J]. Journal of Agricultural & Food Chemistry, 2017, 65(5): 1030-1036. [13] YANG L, HAN L, REN J, et al. Coating process and stability of metal-polyphenol film [J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2015, 484: 197-205. [14] PARK J H, KIM K, LEE J, et al. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation [J]. Angewandte Chemie, 2014, 126(46): 12628-12633. doi: 10.1002/ange.201405905 [15] OZAWA H, HAGA M A. Soft nano-wrapping on graphene oxide by using metal–organic network films composed of tannic acid and Fe ions [J]. Physical Chemistry Chemical Physics, 2015, 17(14): 8609-8613. doi: 10.1039/C5CP00264H [16] EJIMA H, RICHARDSON J J, CARUSO F, et al. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces [J]. Nano Today, 2017: 136-148. [17] SUNGUR S, UZAR A. Investigation of complexes tannic acid and myricetin with Fe(III). [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2008, 69(1): 225-229. doi: 10.1016/j.saa.2007.03.038 [18] BRAY K, PREVIDI R, GIBSON B C, et al. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes [J]. Nanoscale, 2015, 7(11): 4869-4874. doi: 10.1039/C4NR07510B [19] RAHIM M A, KEMPE K, MULLNER M, et al. Surface-confined amorphous films from metal-coordinated simple phenolic ligands [J]. Chemistry of Materials, 2015, 27(16): 5825-5832. doi: 10.1021/acs.chemmater.5b02790 [20] ZHANG P, LI H, VEITH G M, et al. Soluble porous coordination polymers by mechanochemistry:From metal-containing films/membranes to active catalysts for aerobic oxidation [J]. Advanced Materials, 2015, 27(2): 234-239. doi: 10.1002/adma.201403299 [21] KAUPP G. Solid-state molecular syntheses: complete reactions without auxiliaries based on the new solid-state mechanism [J]. CrystEngComm, 2003, 5(23): 117-133. doi: 10.1039/b303432a [22] LEMMERER A, BERNSTEIN J, KAHLENBERG V. Hydrogen bonding patterns of the co-crystal containing the pharmaceutically active ingredient isoniazid and terephthalic acid [J]. Journal of Chemical Crystallography, 2011, 41(7): 991-997. doi: 10.1007/s10870-011-0031-9 [23] FRISCIC T, HALASZ I, BELDON P J, et al. Real-time and in situ monitoring of mechanochemical milling reactions [J]. Nature Chemistry, 2013, 5(1): 66-73. doi: 10.1038/nchem.1505 [24] PITENIS A A, HARRIS K L, JUNK C P, et al. Ultralow wear PTFE and alumina composites: It is all about tribochemistry [J]. Tribology Letters, 2015, 57(1): 3735-3739. [25] BAYTEKIN H T, BAYTEKIN B, HUDA S, et al. Mechanochemical activation and patterning of an adhesive surface toward nanoparticle deposition [J]. Journal of the American Chemical Society, 2015, 137(5): 1726-1729. doi: 10.1021/ja507983x [26] HARRIS K L, PITENIS A A, SAWYER W G, et al. PTFE tribology and the role of mechanochemistry in the development of protective surface films [J]. Macromolecules, 2015, 48(11): 3739-3745. doi: 10.1021/acs.macromol.5b00452 [27] KANG J, BAI G, MA S, et al. On‐Site Surface coordination complexation via mechanochemistry for versatile metal–phenolic networks films[J]. Advanced Materials Interfaces, 2019, 6(5): 1801789. [28] FUJIE T, KAWAMOTO Y, HANIUDA H, et al. Selective molecular permeability induced by glass transition dynamics of semicrystalline polymer ultrathin films [J]. Macromolecules, 2013, 46(2): 395-402. doi: 10.1021/ma302081e [29] HOLTENANDERSEN N, HARRINGTON M J, BIRKEDAL H, et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 2651-2655. doi: 10.1073/pnas.1015862108 [30] FU Z , CHEN R . Study of Complexes of tannic acid with Fe(III) and Fe(II)[J]. Journal of Analytical Methods in Chemistry, 2019,3: 3894571. [31] SHEN G, XING R, ZHANG N, et al. Interfacial cohesion and assembly of bioadhesive molecules for design of long-term stable hydrophobic nanodrugs toward effective anticancer therapy [J]. ACS Nano, 2016, 10(6): 5720-5729. doi: 10.1021/acsnano.5b07276 [32] HONG D, PARK M, YANG S H, et al. Artificial spores: Cytoprotective nanoencapsulation of living cells [J]. Trends in Biotechnology, 2013, 31(8): 442-447. doi: 10.1016/j.tibtech.2013.05.009 [33] POPESCU M, MOURTAS S, PAMPALAKIS G, et al. pH-responsive hydrogel/liposome soft nanocomposites for tuning drug release [J]. Biomacromolecules, 2011, 12(8): 3023-3030. doi: 10.1021/bm2006483 [34] ZHENG D, LEI Q, ZHU J, et al. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. [J]. Nano Letters, 2017, 17(1): 284-291. doi: 10.1021/acs.nanolett.6b04060 [35] ZHU Y, WANG D, JIANG L, et al. Recent progress in developing advanced membranes for emulsified oil/water separation [J]. NPG Asia Materials, 2014, 6(5): e101. doi: 10.1038/am.2014.23 [36] MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review: Recent advances and future prospects [J]. Desalination, 2015, 356: 226-254. doi: 10.1016/j.desal.2014.10.043 [37] MATIN A, KHAN Z, ZAIDI S M, et al. Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention [J]. Desalination, 2011, 281(281): 1-16. [38] RANA D, MATSUURA T. Surface modifications for antifouling membranes [J]. Chemical Reviews, 2010, 110(4): 2448-2471. doi: 10.1021/cr800208y [39] YANG Q, MI B. Nanomaterials for membrane fouling control: accomplishments and challenges [J]. Advances in Chronic Kidney Disease, 2013, 20(6): 536-555. doi: 10.1053/j.ackd.2013.08.005 [40] KIM H J, KIM D, YOON H, et al. Polyphenol/FeIII complex coated membranes having multifunctional properties prepared by a one‐step fast assembly [J]. Advanced Materials Interfaces, 2015, 2(14): 1500298. doi: 10.1002/admi.201500298 [41] SONG Y, KONG X, YIN X, et al. Tannin-inspired superhydrophilic and underwater superoleophobic polypropylene membrane for effective oil/water emulsions separation [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 522: 585-592. doi: 10.1016/j.colsurfa.2017.03.023 [42] WU J, WANG Z, YAN W, et al. Improving the hydrophilicity and fouling resistance of RO membranes by surface immobilization of PVP based on a metal-polyphenol precursor layer [J]. Journal of Membrane Science, 2015, 496: 58-69. doi: 10.1016/j.memsci.2015.08.044 [43] DONG C, WANG Z, WU J, et al. A green strategy to immobilize silver nanoparticles onto reverse osmosis membrane for enhanced anti-biofouling property [J]. Desalination, 2017, 401: 32-41. doi: 10.1016/j.desal.2016.06.034 [44] ZHAO X, ZHANG R, LIU Y, et al. Antifouling membrane surface construction: Chemistry plays a critical role [J]. Journal of Membrane Science, 2018, 551: 145-171. doi: 10.1016/j.memsci.2018.01.039 [45] DING X, ZHANG B, PEI Q, et al. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1 [J]. BMC Cancer, 2014, 14(1): 271. doi: 10.1186/1471-2407-14-271 [46] KIM Y I , YOON T H , LEE S , et al. Integrated optical isolator using multi-mode interference structure.:US10955980[P]. [2005-05-05] [47] YOON H M, KIM Y, LEE J H, et al. Robot-assisted total gastrectomy is comparable with laparoscopically assisted total gastrectomy for early gastric cancer [J]. Surgical Endoscopy and Other Interventional Techniques, 2012, 26(5): 1377-1381. doi: 10.1007/s00464-011-2043-0 [48] TAN Q R, WANG X Z, WANG C Y, et al. Differential effects of classical and atypical antipsychotic drugs on rotenone-induced neurotoxicity in PC12 cells [J]. European Neuropsychopharmacology, 2007, 17(12): 768-773. doi: 10.1016/j.euroneuro.2007.03.003 [49] GURR P A, SCOFIELD J M P, KIM J, et al. Polyimide polydimethylsiloxane triblock copolymers for thin film composite gas separation membranes [J]. Journal of Polymer Science Part A Polymer Chemistry, 2014, 52(23): 3372-3382. doi: 10.1002/pola.27401 [50] BALANTA A, GODARD C, CLAVER C, et al. Pd nanoparticles for C–C coupling reactions [J]. Chemical Society Reviews, 2011, 40(10): 4973-4985. doi: 10.1039/c1cs15195a [51] GARG N, MOHANTY A, LAZARUS N, et al. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors [J]. Nanotechnology, 2010, 49: 4962-4966. [52] XIAO Y, SHLYAHOVSKY B, POPOV I, et al. Shape and color of au nanoparticles follow biocatalytic processes. [J]. Langmuir, 2005, 21(13): 5659-5662. doi: 10.1021/la050308+ [53] BOLOBAJEV J, TRAPIDO M, GOI A. Interaction of tannic acid with ferric iron to assist 2, 4, 6-trichlorophenol catalytic decomposition and reuse of ferric sludge as a source of iron catalyst in Fenton-based treatment [J]. Applied Catalysis B, 2016, 187: 75-82. doi: 10.1016/j.apcatb.2016.01.015