-
近年来,一系列工农业活动导致重金属铅和铬大量添加于土壤环境中,其对陆生动植物的潜在毒性效应已经引起人们的广泛关注。铅和铬进入土壤后,可能会对土壤生物产生一系列毒性效应,如影响土壤动植物的存活、摄食、行为和繁殖,阻碍生物正常生长,改变有关酶活性及损伤DNA等[1-3]。
蚯蚓作为土壤动物最大的常见类群之一,在陆地生态系统中发挥着十分重要的功能[4-5];其代表了土壤生物总量的80%,对土壤生态系统的健康和肥力起着至关重要的作用[6]。此外,蚯蚓被美洲试验材料协会(ASTM)、经济合作与发展组织(OECD)以及国际标准化组织(ISO)作为陆生生态系统标准毒性测试的模式生物[7]。
目前,有关Pb和Cr等重金属对蚯蚓的生态毒理效应研究[1-3, 5]较多,但主要采用人工土壤,且基本没有考虑污染物在土壤中的老化作用。为了对2种重金属的毒性效应提供更接近实际情况的基础数据,本文研究了河北黄壤中铅和铬对赤子爱胜蚓(Eisenia fetida)的毒性效应及其在蚯蚓体内的富集。
河北黄壤中铅和铬(Ⅵ)对赤子爱胜蚓的毒性效应
Toxic effects of lead and chromium(Ⅵ) on the earthworm(Eisenia fetida) in Hebei soils
-
摘要: 通过向供试土壤(河北黄壤)中添加Pb(NO3)2和K2Cr2O7模拟受污染土壤,分别研究了Pb(NO3)2和K2Cr2O7对赤子爱胜蚓(Eisenia fetida)体内超氧化物酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)和过氧化氢酶(catalase,CAT)活性的影响及赤子爱胜蚓对土壤中铅和铬的富集。研究结果表明,土壤中Pb(NO3)2和K2Cr2O7浓度和暴露时间均对蚯蚓体内Pb和Cr含量产生明显影响。暴露7 d和21 d后,蚯蚓体内Pb含量随土壤中Pb(NO3)2浓度的增加而增加;蚯蚓体内Pb富集系数均小于1,说明赤子爱胜蚓对土壤中的Pb仅有吸收,而没有富集作用;蚯蚓体内Cr富集系数均远大于1,说明赤子爱胜蚓对土壤中的Cr具有很强的富集作用。蚯蚓对Cr的富集量要远远大于Pb,这说明赤子爱胜蚓对不同重金属的富集能力是不同的,其对重金属的富集具有一定的选择性。在测试浓度范围内(Pb(NO3)2:0—1000 mg·kg−1,K2Cr2O7:0—90 mg·kg−1),土壤中Pb(NO3)2和K2Cr2O7对赤子爱胜蚓体内SOD、POD和CAT活性均产生了显著的影响,暴露1 d后,Pb(NO3)2对蚯蚓体内3种抗氧化酶活性呈现激活作用,暴露21 d后,蚯蚓体内POD和CAT活性均随土壤中Pb(NO3)2和K2Cr2O7浓度的增加而降低;除此之外,3种抗氧化酶活性出现时高时低的波动,呈现不同程度的激活或抑制作用,表明其活性与土壤中Pb(NO3)2和K2Cr2O7浓度的剂量-效应关系不显著。Abstract: Effects of Pb(NO3)2 and K2Cr2O7 on activities of three antioxidative enzymes, superoxide dismutase (SOD), peroxidase(POD) and catalase (CAT) in the earthworm, Eisenia fetida, were investigated with Hebei soils by adding Pb(NO3)2 and K2Cr2O7. The effects of earthworm accumulation of lead (Pb) and chromium (Cr) were also studied. The results showed that the heavy metal level in the soil and the exposure time both influenced the contents of Pb and Cr in the earthworm. The Pb level in the earthworm increased with increasing Pb(NO3)2 concentration in the soil after 7-days and 21-days exposure. The bioconcentration factors of Pb in the earthworms were all lower than 1, which indicated that earthworms could only absorb part of Pb rather than accumulate them. The bioconcentration factors of Cr in the earthworms were all higher than 1 after 7-days and 21-days exposure, which indicated that earthworms had strong chromium accumulation ability. The accumulation of Cr was much higher than that of Pb, suggesting that Cr could be taken up more easily by earthworms than Pb and earthworms are selective about the accumulation of heavy metals. Pb(NO3)2 and K2Cr2O7 both caused significant effects (activation or inhibition) on activities of three antioxidative enzymes. Pb(NO3)2 induced the activities of the three antioxidant enzymes in earthworms after 1-day exposure, and the POD and CAT activities decreased with the increase of Pb(NO3)2 and K2Cr2O7 concentrations in the soils after 21-day exposure. Besides, the unpredictable trends of SOD, POD and CAT activities indicating that there was no significant dose-response relationship between the activities and the concentrations of Pb(NO3)2 and K2Cr2O7 in the soils.
-
Key words:
- lead /
- chromium(Ⅵ) /
- Hebei soils /
- Eisenia fetida /
- bioaccumulation /
- superoxide dismutase (SOD) /
- peroxidase (POD) /
- catalase (CAT)
-
表 1 供试土壤的理化性质
Table 1. The physical and chemical properties of soils for experiments
Pb/(mg·kg−1) Cr/(mg·kg−1) pH 含水率/% Moisture content 土壤 6.408 11.327 8.09 2.681 表 2 蚯蚓体内Pb含量与土壤中Pb浓度的回归分析(n=4)
Table 2. Regressing analysis of the lead concentration between soils and earthworms
暴露天数
Exposure time回归方程
Regressing equation相关系数
Correlation coefficient显著水平
Significant level7 d Y=0.069X−16.152 0.988 <0.05 21 d Y=0.1956X−38.171 0.951 <0.05 表 3 不同试验组蚯蚓Pb富集系数
Table 3. Bioconcentration factors of different lead treatments
暴露天数/d
Exposure timePb/(mg·kg−1) 124.4 248.7 373.1 497.4 621.8 7 0.0000 0.0025 0.0303 0.0319 0.0446 21 0.0067 0.0742 0.0768 0.0958 0.1499 表 4 蚯蚓体内Cr含量与土壤中Cr浓度的回归分析(n=3)
Table 4. Regressing analysis of the chromium concentration between soils and earthworms
暴露天数
Exposure time回归方程
Regressing equation相关系数
Correlation coefficient显著水平
Significant level7 d Y=−12.675X+676.38 0.960 >0.05 21 d Y=22.038X+106.89 0.988 >0.05 表 5 不同试验组蚯蚓Cr富集系数
Table 5. Bioconcentration factors of different chromium treatments
暴露天数
Exposure time /dCr/(mg·kg−1) 10.6 21.2 31.8 7 49.0 21.4 7.9 21 34.1 25.1 26.1 -
[1] 陈丽红, 刘征涛, 李政, 等. 老化土壤中铬(Ⅵ)对赤子爱胜蚓繁殖及抗氧化酶活性的影响 [J]. 环境化学, 2013, 32(12): 2364-2369. doi: 10.7524/j.issn.0254-6108.2013.12.021 CHEN L H, LIU Z T, LI Z, et al. Effects of Cr(Ⅵ) on the reproduction and antioxidant enzyme activities of Eisenia fetida with aged soils [J]. Environmental Chemistry, 2013, 32(12): 2364-2369(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.12.021
[2] 王婉华, 陈丽红, 刘征涛, 等. 重金属铬(Ⅵ)和铅对南京土壤中赤子爱胜蚓生长及繁殖的影响 [J]. 环境化学, 2015, 34(10): 1839-1844. doi: 10.7524/j.issn.0254-6108.2015.10.2015042102 WANG W H, CHEN L H, LIU Z T, et al. Effects of chromium(Ⅵ) and lead on the growth and reproduction of Eisenia Fetida in Nanjing soils [J]. Environmental Chemistry, 2015, 34(10): 1839-1844(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.10.2015042102
[3] 张聪, 刘征涛, 王婉华, 等. 铅对赤子爱胜蚓抗氧化酶活性的影响 [J]. 环境科学研究, 2013, 26(3): 294-299. ZHANG C, LIU Z T, WANG W H, et al. Effects of lead ion on activities of three antioxidant enzymes from the earthworm, Eisenia fetida [J]. Research of Environmental Sciences, 2013, 26(3): 294-299(in Chinese).
[4] 黄初龙, 张雪萍. 蚯蚓环境生态作用研究进展 [J]. 生态学杂志, 2005, 24(12): 1466-1470. doi: 10.3321/j.issn:1000-4890.2005.12.019 HUANG C L, ZHANG X P. Research progress on environmental and ecological functions of earthworm [J]. Chinese Journal of Ecology, 2005, 24(12): 1466-1470(in Chinese). doi: 10.3321/j.issn:1000-4890.2005.12.019
[5] 寇永纲, 伏小勇, 侯培强, 等. 蚯蚓对重金属污染土壤中铅的富集作用 [J]. 环境科学与管理, 2008, 33(1): 62-64, 73. doi: 10.3969/j.issn.1673-1212.2008.01.018 KOU Y G, FU X Y, HOU P Q, et al. The study of lead accumulation of earthworm in lead pollution soil [J]. Environmental Science and Management, 2008, 33(1): 62-64, 73(in Chinese). doi: 10.3969/j.issn.1673-1212.2008.01.018
[6] GOMEZ-EYLES J L, SVENDSEN C, LISTER L, et al. Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on Caenorhabditis elegans and Eisenia fetida [J]. Ecotoxicol Environ Saf, 2009, 72(1): 71-79. doi: 10.1016/j.ecoenv.2008.07.006 [7] MORGAN J E, MORGAN A J. Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils [J]. Environ Pollut, 1988, 54(2): 123-138. doi: 10.1016/0269-7491(88)90142-X [8] 朱宇恩. 蚯蚓对土壤中有效态Pb、Zn含量的影响及其机理研究[D]. 济南: 山东师范大学, 2005. ZHU Y E. Effects of earthworm on available pool of Pb, Zn in soils and its mechanism[D]. Jinan: Shandong Normal University, 2005(in Chinese).
[9] 伏小勇, 秦赏, 杨柳, 等. 蚯蚓对土壤中重金属的富集作用研究 [J]. 农业环境科学学报, 2009, 28(1): 78-83. doi: 10.3321/j.issn:1672-2043.2009.01.015 FU X Y, QIN S, YANG L, et al. Effects of earthworm accumulation of heavy metals in soil matrix [J]. Journal of Agro-Environment Science, 2009, 28(1): 78-83(in Chinese). doi: 10.3321/j.issn:1672-2043.2009.01.015
[10] ZHANG W, CHEN L, LIU K, et al. Lead accumulations and toxic effcts in earthworms (Eisenia fetida) in the presence of decabromodiphenyl ether [J]. Environ Sci Pollut Res, 2014, 21(5): 3484-3490. doi: 10.1007/s11356-013-2344-z [11] HONEYCUTT M E, ROBERTS B L, ROANE D S. Cadmium disposition in the earthworm Eisenia fetida [J]. Ecotoxicol Environ Saf, 1995, 30(2): 143-150. doi: 10.1006/eesa.1995.1018 [12] SPURGEON D J, HOPKIN S P. Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils [J]. Appl Soil Ecol, 1999, 11(2/3): 227-243. [13] SPURGEON D J, HOPKIN S P. The development of genetically inherited resistance to zinc in laboratory-selected generations of the earthworm Eisenia fetida [J]. Environ Pollut, 2000, 109(2): 193-201. doi: 10.1016/S0269-7491(99)00267-5 [14] 李志强, 王彬彬, 聂俊华. 铜污染对蚯蚓体重的影响与其铜富集特征 [J]. 生态学报, 2009, 29(3): 1408-1414. doi: 10.3321/j.issn:1000-0933.2009.03.038 LI Z Q, WANG B B, NIE J H. Effects of copper on earthworm in body weight and its copper accumulating characteristics [J]. Acta Ecologica Sinica, 2009, 29(3): 1408-1414(in Chinese). doi: 10.3321/j.issn:1000-0933.2009.03.038
[15] MARINUSSEN M P J C, VAN DER ZEE S E A T M, DE HAAN F A M. Cu accumulation in Lumbricus rubellus under laboratory conditions compared with accumulation under field conditions [J]. Ecotoxicol Environ Saf, 1997, 36: 17-26. doi: 10.1006/eesa.1996.1482