-
抗生素与人们的生活息息相关,其被广泛用于防治疾病和发展养殖业[1-2]等。相对于美国每年2.3万吨的使用量和欧盟5万吨的使用量而言[3-4],我国以每年超15万吨的使用量成为全球最大的抗生素消费大国[5]。据报道,有将近60%的抗生素使用后被排放到水体环境中[6],这就使得水体受到了污染,无论是水源水[7-8]还是非水源水[9-10]都能检测到浓度为ng·L−1水平的抗生素,一些水体的检出浓度甚至达到mg·L−1水平[11]。目前,污水处理厂对水体中抗生素的处理效果并不是很理想[12-14],这些残留的抗生素会通过食物链放大作用对人体产生蓄积毒性[1, 15-16]。在众多的抗生素中,氨基糖苷类抗生素以其抗菌谱广、低成本、治疗效果好等优点而被大量使用[17-19],值得注意的是,此类抗生素的溶解性较高,导致环境受到其污染的几率大大加大。因此,非常有必要对氨基糖苷类抗生素进行毒性分析,从而为环境风险评估提供一定的数据参考。硫酸阿米卡星(Amikacin sulfate, AMI)是常用的氨基糖苷类抗生素一种,其被广泛用于临床上治疗由细菌感染的革兰氏阴性的患者。有研究表明,AMI造成肾毒性和长期耳毒性的概率为7%—62%[20]。在各类水体、牛奶、土壤和动物组织中检测到较高的残留[21],对环境的潜在危害较大,因此有必要对AMI进行毒理学研究。
除抗生素外,作为污染物之一的重金属对环境也有较大的危害[22]。采矿、冶炼和制造等人类活动都会加剧环境中重金属的污染[23],此外,重金属具有不易降解性、持久性和生物富集等特点,这使得被重金属污染的水体对整个生态系统会产生不可逆转的损害[24]。我国约有2.8×109 m2的农业土壤被镉污染,环境中大于90%的镉污染是由于人类活动造成的[25],镉污染对人类健康存在很大的危害。生产锰的过程中约有55%的锰会排放到废水和废渣中,造成水体氨氮等指标严重超标[26],国内锰污染事件常被报道,“锰三角”也引起了较大的关注[27]。我国近20年来锌的产量是所有重金属中最多的[28],锌的点位超标率达到了0.9%[29],一些环境中锌的含量竟然能达到背景值的5倍多[28]。总之,在众多的重金属污染中,镉、锰和锌对环境造成的污染较为严重,因此有必要对这3种重金属进行毒理学研究。越来越多的研究表明,环境中的污染物都是以混合物形式存在的[30-31]。其中,在众多混合物的毒性研究中,重金属与抗生素的毒性研究较少。重金属离子会改变抗生素的生态危害,并最终影响环境污染的治理和防护,此外,人类活动又极大增加了重金属与抗生素对环境产生复合污染的机会,且硫酸阿米卡星、镉、锰和锌对环境又存在极大的危害,因此有必要探讨其混合毒性规律。
随着混合物体系越来越复杂,使得混合污染物的毒理学评估变得越来越极具挑战性。越来越多的模型被用于评估混合物的毒性,其中最经典的两种模型是浓度加和(concentration addition, CA) 和独立作用(independent action,IA)模型[30, 32]。为了比较两种模型评估结果的差异,采用效应残差比(effect residual ratio, ERR)[33-36]来量化参考模型与实验数据的偏差,即可以定量评估混合物毒性相互作用。李孟涵等[37]采用半数效应 (E50)时的ERR值来表征拟合曲线与实测的偏离程度。Wang等[33]和Qin等[34]认为毒性作用评估需要综合考虑多个效应水平,因此,应用ERR对整个效应曲线上的毒性相互作用表征更有实际意义。
因此,本研究以蛋白核小球藻(Chlorella pyrenoidosa, C.pyrenoidosa)为受试生物,以3种重金属(五水合氯化镉(CdCl2·2.5H2O,Cd)、四水合氯化锰(MnCl2·4H2O,Mn)和七水合硫酸锌(ZnSO4·7H2O, Zn))和AMI为研究对象。采用均匀设计射线法(UD-Ray)[38]设计三组二元混合体系(Cd-AMI、Mn-AMI和Zn-AMI),以此研究3种重金属(Cd、Mn和Zn)与AMI的联合毒性。此外,以CA和IA模型进行毒性相互作用评估,采用ERR来比较两种模型评估结果的差异和动态表征毒性相互作用,以期为客观、准确地评估污染物的环境风险提供的方法和数据参考。
抗生素与重金属对蛋白核小球藻时间依赖协同作用的动态定量表征
Dynamic and quantitative characterization of time-dependent synergism between antibiotics and heavy metals on Chlorella pyrenoidosa
-
摘要: 以硫酸阿米卡星(Amikacin sulfate, AMI)、五水合氯化镉(CdCl2·2.5H2O, Cd)、四水合氯化锰(MnCl2·4H2O, Mn)和七水合硫酸锌(ZnSO4·7H2O, Zn)为研究对象,以蛋白核小球藻(Chlorella pyrenoidosa, C. pyrenoidosa)为指示生物,采用均匀设计射线法设计3组二元混合体系(AMI-Cd、AMI-Mn和AMI-Zn),并应用时间毒性微板分析法测定其对C. pyrenoidosa的毒性数据,以浓度加和模型(Concentration addition, CA)和独立作用模型(Independent action, IA)为标准加和模型进行毒性相互作用分析,并运用效应残差比(Effect residual ratio, ERR)进行定量动态表征毒性相互作用。结果表明,3组二元混合体系共十五条射线的混合毒性呈明显的时间依赖性和浓度依赖性;依据ERR,CA和IA对三组二元混合体系的毒性评估结果基本一致,但3个混合物体系的毒性相互作用具有不同的时间变化规律,即随暴露时间延长,AMI-Cd中五条射线的中浓度区由协同作用逐渐变为加和作用,AMI-Zn中5条射线在高浓度区的协同作用逐渐变为加和作用,而中低浓度区的协同作用在加强;AMI-Mn的毒性相互作用随时间变化不是很明显;与CA和IA相比,ERR定量地表征了混合物体系的毒性相互作用强度,这为客观和准确地评估污染物的环境风险提供了方法和数据参考。Abstract: Amikacin sulfate (AMI), cadmium chloride pentahydrate (CdCl2·2.5H2O, Cd), manganese chloride tetrahydrate (MnCl2·4H2O, Mn) and zinc sulfate heptahydrate (ZnSO4·7H2O, Zn) were selected as the research objects to investigate their combined toxicity towards a freshwater algae Chlorella pyrenoidosa (C. pyrenoidosa) by the time-dependent toxicity microplate analysis. Three binary mixture systems (AMI-Cd, AMI-Mn and AMI-Zn) were designed by uniform design ray method. Concentration addition (CA) and independent action (IA) models were used to analyze toxicity interaction, and the effect residual ratio (ERR) was used to dynamically and quantitatively characterize toxic interaction. The results show that the combined toxicity of 15 rays in three binary systems is of obvious time-dependency and concentration-dependency. The toxicity interaction analyzed by CA and IA for the three binary mixture systems are similar, but different mixture systems have different time regularities. With the prolonging of exposure time, the medium concentration region of the five rays in AMI-Cd gradually changes from synergism to additive effect. The high concentration region of the five rays in AMI-Zn gradually changes from synergism to additive effect, and synergism is strengthening in the middle and low concentration regions. The changing of toxicity interaction within AMI-Mn mixture system with time is not obvious. In addition, compared with CA and IA, ERR quantitatively characterized the toxic interaction intensity of the mixture system, which provides a method and data reference for the objective and accurate assessment of the environmental risk of pollutants.
-
表 1 抗生素与重金属理化性质和储备液浓度
Table 1. Physical and chemical properties of antibiotic and heavy metals and concentration of stocks
化合物
Name简称
Abbreviation分子式
Molecular formulaCAS-RN 分子量
Formula weight纯度/%
Purity储备液浓度/(mol·L−1)
Stock solution硫酸阿米卡星 AMI C22H43N5O13·2H2SO4 39831-55-5 781.76 ≥67.4 1.33×10−3 五水合氯化镉 Cd CdCl2·2.5H2O 7790-78-5 228.35 ≥99.0 1.08×10−2 四水合氯化锰 Mn MnCl2·4H2O 13446-34-9 197.90 ≥99.0 1.58×10−3 七水合硫酸锌 Zn ZnSO4·7H2O 7446-20-0 287.56 ≥99.0 6.68×10−2 表 2 混合体系组分构成及浓度比(pi)
Table 2. Composition and concentration ratio (pi) of the mixture systems
B1 PCd PAMI B2 PMn PAMI B3 PZn PAMI R1 8.673×10−1 1.327×10−1 R1 9.183×10−1 8.170×10−2 R1 9.500×10−1 5.000×10−2 R2 7.233×10−1 2.767×10−1 R2 8.181×10−1 1.819×10−1 R2 8.837×10−1 1.163×10−1 R3 5.666×10−1 4.334×10−1 R3 6.922×10−1 3.078×10−1 R3 7.916×10−1 2.084×10−1 R4 3.953×10−1 6.047×10−1 R4 5.292×10−1 4.708×10−1 R4 6.551×10−1 3.449×10−1 R5 2.073×10−1 7.927×10−1 R5 3.102×10−1 6.898×10−1 R5 4.318×10−1 5.682×10−1 -
[1] GUO H H, XUE S H, NASIR M, et al. Impacts of cadmium addition on the alteration of microbial community and transport of antibiotic resistance genes in oxytetracycline contaminated soil [J]. Journal of Environmental Sciences, 2021, 99(1): 51-58. [2] AGNIESZKA C, JOANNA L, KAUR B S, et al. Influence of metal speciation in wastewater sludge on antibiotic distribution [J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25(2): 04020078. doi: 10.1061/(ASCE)HZ.2153-5515.0000592 [3] PRUDEN A, PEI R T, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado [J]. Environmental Science & Technology, 2006, 40(23): 7445-7450. [4] KUMMERER K. Significance of antibiotics in the environment [J]. The Journal of Antimicrobial Chemotherapy, 2003, 52(1): 5-7. doi: 10.1093/jac/dkg293 [5] WANG Z, DU Y, YANG C, et al. Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu, China [J]. Science of the Total Environment, 2017, 609: 1423-1432. doi: 10.1016/j.scitotenv.2017.08.009 [6] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [7] 李楠, 赵新华. 华北T市某自来水厂抗生素的分布及去除 [J]. 中国给水排水, 2017, 33(21): 48-52. LI N, ZHAO X H. Distribution and removal of antibiotics in a waterworks in North China [J]. China Water & Wastewater, 2017, 33(21): 48-52(in Chinese).
[8] 张君, 程艳茹, 杨海蓉, 等. 重庆地区典型水库表层水体抗生素分布特征研究 [J]. 环境科学与管理, 2018, 43(11): 26-30. doi: 10.3969/j.issn.1673-1212.2018.11.007 ZHANG J, CHENG Y R, YANG H R, et al. Concentrations and pollution characteristics of typical antibiotics in typical reservoir in Chongqing [J]. Environmental Science and Management, 2018, 43(11): 26-30(in Chinese). doi: 10.3969/j.issn.1673-1212.2018.11.007
[9] 刘晓晖, 卢少勇. 大通湖表层水体中抗生素赋存特征与风险 [J]. 中国环境科学, 2018, 38(1): 320-329. doi: 10.3969/j.issn.1000-6923.2018.01.036 LIU X H, LU S Y. Occurrence and ecological risk of typical antibiotics in surface water of the Datong Lake, China [J]. China Environmental Science, 2018, 38(1): 320-329(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.01.036
[10] 王嘉玮, 魏红, 杨小雨, 等. 渭河西安段磺胺类抗生素的分布特征及生态风险评价 [J]. 环境化学, 2017, 36(12): 2574-2583. doi: 10.7524/j.issn.0254-6108.2017032402 WANG J W, WEI H, YANG X Y, et al. Occurrence and ecological risk of sulfonamide antibiotics in the surface water of the Weihe Xi'an section [J]. Environmental Chemistry, 2017, 36(12): 2574-2583(in Chinese). doi: 10.7524/j.issn.0254-6108.2017032402
[11] JIANG Y, LI M, GUO C, et al. Distribution and ecological risk of antibiotics in a typical effluent–receiving river (Wangyang River) in North China [J]. Chemosphere, 2014, 112: 267-274. doi: 10.1016/j.chemosphere.2014.04.075 [12] 徐维海, 张干, 邹世春, 等. 典型抗生素类药物在城市污水处理厂中的含量水平及其行为特征 [J]. 环境科学, 2007, 28(8): 1779-1783. doi: 10.3321/j.issn:0250-3301.2007.08.023 XU W H, ZHANG G, ZOU S C, et al. Occurrence, distribution and fate of antibiotics in sewage treatment plants [J]. Environmental Science, 2007, 28(8): 1779-1783(in Chinese). doi: 10.3321/j.issn:0250-3301.2007.08.023
[13] BROWN K D, KULIS J, THOMSON B, et al. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico [J]. Science of the Total Environment, 2005, 366(2): 772-783. [14] KARTHIKEYAN K G, MEYER M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA [J]. The Science of the Total Environment, 2006, 361(1-3): 196-207. doi: 10.1016/j.scitotenv.2005.06.030 [15] 徐永刚, 宇万太, 马强, 等. 环境中抗生素及其生态毒性效应研究进展 [J]. 生态毒理学报, 2015, 10(3): 11-27. XU Y G, YU W T, MA Q, et al. The antibiotic in environment and its ecotoxicity: A review [J]. Asian Journal of Ecotoxicology, 2015, 10(3): 11-27(in Chinese).
[16] 刘鹏霄, 王旭, 冯玲. 自然水环境中抗生素的污染现状、来源及危害研究进展 [J]. 环境工程, 2020, 38(5): 36-42. LIU P X, WANG X, FENG L. Occurrences, resources and risk of antibiotics in aquatic environment: A review [J]. Environmental Engineering, 2020, 38(5): 36-42(in Chinese).
[17] 吴佳慧, 刘鹏宇. 氨基糖苷类抗生素的发展历程 [J]. 中国抗生素杂志, 2019, 44(11): 1275-1282. doi: 10.3969/j.issn.1001-8689.2019.11.008 WU J H, LIU P Y. The past and present of aminoglycoside antibiotics [J]. Chinese Journal of Antibiotics, 2019, 44(11): 1275-1282(in Chinese). doi: 10.3969/j.issn.1001-8689.2019.11.008
[18] ZHOU J W, HOU B, LIU G Y, et al. Attenuation of pseudomonas aeruginosa biofilm by hordenine: a combinatorial study with aminoglycoside antibiotics [J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9745-9758. doi: 10.1007/s00253-018-9315-8 [19] 张红, 程寒飞. 水环境中氨基糖苷类抗性基因污染及研究进展 [J]. 环境科学与技术, 2018, 41(10): 121-130. ZHANG H, CHENG H F. Aquatic environmental pollution of aminoglycoside resistance genes: A review [J]. Environmental Science & Technology, 2018, 41(10): 121-130(in Chinese).
[20] SIEBINGA H, ROBB F, THOMSON A H. Population pharmacokinetic evaluation and optimization of amikacin dosage regimens for the management of mycobacterial infections [J]. J Antimicrob Chemoth, 2020, 75(10): 2933-2940. doi: 10.1093/jac/dkaa277 [21] 付启明, 欧晓明, 刘红玉. 农产品中氨基糖苷类抗生素的残留检测方法研究进展 [J]. 农药, 2009, 48(11): 784-789, 792. doi: 10.3969/j.issn.1006-0413.2009.11.002 FU Q M, OU X M, LIU H Y. Current development of residue detection and analysis of aminoglycoside antibiotics in agricultural products [J]. Agrochemicals, 2009, 48(11): 784-789, 792(in Chinese). doi: 10.3969/j.issn.1006-0413.2009.11.002
[22] 宋崇崇, 陶梦婷, 张瑾, 等. 3种重金属对蛋白核小球藻的联合毒性及机理 [J]. 环境科学与技术, 2020, 43(2): 88-95. SONG C C, TAO M T, ZHANG J, et al. Combined toxicity and the mechanisms of three heavy metals to Chlorella pyrenoidosa [J]. Environmental Science & Technology, 2020, 43(2): 88-95(in Chinese).
[23] KUMAR B, AGRAWAL K, VERMA P. Microbial electrochemical system: A sustainable approach for mitigation of toxic dyes and heavy metals from wastewater [J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25(2): 04020082. doi: 10.1061/(ASCE)HZ.2153-5515.0000590 [24] EOM H, PARK M, JANG A, et al. A simple and rapid algal assay kit to assess toxicity of heavy metal-contaminated water [J]. Environmental Pollution, 2021, 269: 116135. doi: 10.1016/j.envpol.2020.116135 [25] 綦峥, 齐越, 杨红, 等. 土壤重金属镉污染现状、危害及治理措施 [J]. 食品安全质量检测学报, 2020, 11(7): 2286-2294. QI Z, QI Y, YANG H, et al. Status, harm and treatment measures of heavy metal cadmium pollution in soil [J]. Journal of Food Safety & Quality, 2020, 11(7): 2286-2294(in Chinese).
[26] 金修齐, 黄代宽, 赵书晗, 等. 松桃河流域氨氮和锰污染特征及生态风险评价 [J]. 中国环境科学, 2021, 41(1): 385-395. doi: 10.3969/j.issn.1000-6923.2021.01.044 JIN X Q, HUANG D K, ZHAO S H, et al. Pollution characteristics and ecological risk assessment of ammonia nitrogen and manganese in Songtao River Basin of Guizhou Province, China [J]. China Environmental Science, 2021, 41(1): 385-395(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.01.044
[27] 巴家文, 邢玉花, 安远锋, 等. “锰三角”区域松桃河大口鲇和斑鳜重金属富集及风险评价研究 [J]. 淡水渔业, 2019, 49(4): 108-112. BA J W, XING Y H, AN Y F, et al. Study on heavy metal enrichment and risk assessment of Silurus meridoualis and Siniperca scherzeri in Songtao river of the ‘manganese triangle’ area [J]. Freshwater Fisheries, 2019, 49(4): 108-112(in Chinese).
[28] 符志友, 冯承莲, 赵晓丽, 等. 我国流域水环境中铜、锌的生态风险及管理对策 [J]. 环境工程, 2019, 37(11): 70-74. FU Z Y, FENG C L, ZHAO X L, et al. Ecollogical risks and management countermeasures of copper and zinc in water environment of China [J]. Environmental Engineering, 2019, 37(11): 70-74(in Chinese).
[29] 马其雪, 孙向阳, 李素艳, 等. 园林绿化废弃物堆肥对铅、锌污染土壤上小白菜生理特性的影响 [J]. 浙江农业学报, 2020, 32(11): 2027-2034. doi: 10.3969/j.issn.1004-1524.2020.11.13 MA Q X, SUN X Y, LI S Y, et al. Effects of applying green waste compost on physiological characteristics of pakchoi in Pb, Zn contaminated soil [J]. Acta Agriculture Zhejiangensis, 2020, 32(11): 2027-2034(in Chinese). doi: 10.3969/j.issn.1004-1524.2020.11.13
[30] MO L Y, LIU S S, ZHU Y N, et al. Combined toxicity of the mixtures of phenol and aniline derivatives to Vibrio qinghaiensis sp. -Q67 [J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(4): 473-479. doi: 10.1007/s00128-011-0374-0 [31] ZHANG Y H, LIU S S, SONG X Q, et al. Prediction for the mixture toxicity of six organophosphorus pesticides to the luminescent bacterium Q67 [J]. Ecotoxicology and Environmental Safety, 2008, 71(3): 880-888. doi: 10.1016/j.ecoenv.2008.01.014 [32] HUANG W Y, LIU F, LIU S S, et al. Predicting mixture toxicity of seven phenolic compounds with similar and dissimilar action mechanisms to Vibrio qinghaiensis sp. nov. Q67 [J]. Ecotoxicology and Environmental Safety, 2011, 74(6): 1600-1606. doi: 10.1016/j.ecoenv.2011.01.007 [33] WANG L J, LIU S S, ZHANG J, et al. A new effect residual ratio (ERR) method for the validation of the concentration addition and independent action models [J]. Environmental Science and Pollution Research International, 2010, 17(5): 1080-1089. doi: 10.1007/s11356-009-0265-7 [34] QIN L T, LIU S S, ZHANG J, et al. A novel model integrated concentration addition with independent action for the prediction of toxicity of multi-component mixture [J]. Toxicology, 2011, 280(3): 164-172. doi: 10.1016/j.tox.2010.12.007 [35] QU R, LIU S S, CHEN F, et al. Complex toxicological interaction between ionic liquids and pesticides to Vibrio qinghaiensis sp. -Q67 [J]. Rsc Advances, 2016, 6(25): 21012-21018. doi: 10.1039/C5RA27096K [36] DOU R N, LIU S S, MO L Y, et al. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos [J]. Environmental Science and Pollution Research, 2011, 18(5): 734-742. doi: 10.1007/s11356-010-0419-7 [37] 李孟涵, 贺子琪, 苗家赫, 等. 重金属Pb与抗生素对发光菌的联合毒性研究 [J]. 农业环境科学学报, 2020, 39(9): 1925-1936. doi: 10.11654/jaes.2020-0103 LI M H, HE Z Q, MIAO J H, et al. Joint toxicity of heavy metal Pb and antibiotics to photobacterium [J]. Journal of Agro-Environment Science, 2020, 39(9): 1925-1936(in Chinese). doi: 10.11654/jaes.2020-0103
[38] 刘芳, 刘树深, 刘海玲. 部分离子液体及其混合物对发光菌的毒性作用 [J]. 生态毒理学报, 2007, 2(2): 164-171. LIU F, LIU S S, LIU H L. Toxicities of selected ionic liquids and their mixtures to photobacteria (Vibrio-qinghaiensis sp. -Q67) [J]. Asian Journal of Ecotoxicology, 2007, 2(2): 164-171(in Chinese).
[39] WANG L J, LIU S S, YUAN J, et al. Remarkable hormesis induced by 1-ethyl-3-methyl imidazolium tetrafluoroborate on Vibrio qinghaiensis sp. -Q67 [J]. Chemosphere, 2011, 84(10): 1440-1445. doi: 10.1016/j.chemosphere.2011.04.049 [40] 刘树深, 张瑾, 张亚辉, 等. APTox: 化学混合物毒性评估与预测 [J]. 化学学报, 2012, 70(14): 1511-1517. doi: 10.6023/A12050175 LIU S S, ZHANG J, ZHANG Y H, et al. APTox: assessment and prediction on toxicity of chemical mixtures [J]. Acta Chimica Sinica, 2012, 70(14): 1511-1517(in Chinese). doi: 10.6023/A12050175
[41] 陈琼, 张瑾, 李小猛, 等. 几种抗生素对蛋白核小球藻的时间毒性微板分析法 [J]. 生态毒理学报, 2015, 10(2): 190-197. CHEN Q, ZHANG J, LI X M, et al. Time-dependent microplate toxicity analysis(T-MTA) of several antibiotics to Chlorella pyrenoidosa [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 190-197(in Chinese).
[42] 丁婷婷, 董欣琪, 张瑾, 等. 3种氨基糖苷类抗生素对水生生物的时间依赖联合毒性作用比较 [J]. 生态毒理学报, 2018, 13(1): 126-137. doi: 10.7524/AJE.1673-5897.20170528001 DING T T, DONG X Q, ZHANG J, et al. Comparison of time-dependent joint toxicity interaction of three aminoglycosides antibiotics between two aquatic organisms [J]. Asian Journal of Ecotoxicology, 2018, 13(1): 126-137(in Chinese). doi: 10.7524/AJE.1673-5897.20170528001
[43] 王滔, 张瑾, 卞志强, 等. 2种经典模型对抗生素与重金属锌的蛋白核小球藻时间依赖联合毒性作用的评估比较 [J]. 生态毒理学报, 2019, 14(4): 130-139. WANG T, ZHANG J, BIAN Z Q, et al. Comparative evaluation on the time-dependent joint toxicity of antibiotics and heavy metal zinc towards Chlorella pyrenoidosa between two classical models [J]. Asian Journal of Ecotoxicology, 2019, 14(4): 130-139(in Chinese).
[44] ZHANG J, LIU S S, DOU R N, et al. Evaluation on the toxicity of ionic liquid mixture with antagonism and synergism to Vibrio qinghaiensis sp. -Q67 [J]. Chemosphere, 2011, 82(7): 1024-1029. doi: 10.1016/j.chemosphere.2010.10.063 [45] 刘树深. 化学混合物毒性评估与预测方法[M]. 北京: 科学出版社, 2017: 25-26. LIU S S. Assessment and prediction of toxicity of chemical mixtures[M]. Beijing: Science Press, 2017: 25-26(in Chinese).
[46] 莫凌云, 刘海玲, 刘树深, 等. 5种取代酚化合物对淡水发光菌的联合毒性 [J]. 生态毒理学报, 2006, 1(3): 259-264. MO L Y, LIU H L, LIU S S, et al. Joint toxicity of 5 substituted phenols to freshwater photobacteria [J]. Asian Journal of Ecotoxicology, 2006, 1(3): 259-264(in Chinese).
[47] LIU L, LIU S S, YU M, et al. Application of the combination index integrated with confidence intervals to study the toxicological interactions of antibiotics and pesticides in Vibrio qinghaiensis sp. -Q67 [J]. Environmental Toxicology and Pharmacology, 2015, 39(1): 447-456. doi: 10.1016/j.etap.2014.12.013 [48] 陈敏, 张瑾, 董欣琪, 等. 多元抗生素与重金属混合物对蛋白核小球藻的时间依赖性协同与拮抗作用 [J]. 农业环境科学学报, 2018, 37(5): 850-859. doi: 10.11654/jaes.2017-1159 CHEN M, ZHANG J, DONG X Q, et al. Time-dependent synergism and antagonism within multi-component mixtures of heavy metals and antibiotics towards Chlorella pyrenoidosa [J]. Journal of Agro-Environment Science, 2018, 37(5): 850-859(in Chinese). doi: 10.11654/jaes.2017-1159
[49] 宋晓青, 刘树深, 刘海玲, 等. 部分除草剂与重金属混合物对发光菌的毒性 [J]. 生态毒理学报, 2008, 3(3): 237-243. SONG X Q, LIU S S, LIU H L, et al. Mixture toxicity of herbicides and heavy metal compounds to photobacteria (Vibrio qinghaiensis sp. —Q67) [J]. Asian Journal of Ecotoxicology, 2008, 3(3): 237-243(in Chinese).
[50] 卞志强, 张瑾, 王滔, 等. 氨基甲酸酯类农药对蛋白核小球藻联合毒性作用特点及机制 [J]. 生态毒理学报, 2019, 14(4): 150-162. BIAN Z Q, ZHANG JIN, WANG T, et al. Time-dependent joint toxicity characteristics and mechanisms of five carbamate pesticides towards chlorella pyrenoidosa [J]. Asian Journal of Ecotoxicology, 2019, 14(4): 150-162(in Chinese).