-
随着经济的高速发展和城市化进程的加快,空气污染问题已经成为国内外研究者关注的焦点。近年来,由颗粒物污染造成的城市雾霾现象屡屡发生,因此,颗粒物已成为控制城市空气质量的关键因子之一[1-3]。细颗粒物PM2.5(直径≤2.5 μm的颗粒物)直径不及人们头发丝粗细的1/20,又称为可入肺颗粒物。虽然PM2.5在空气中所占比例并不大,但具有粒径小、表面积大、长期悬浮、易附着大量有毒有害物质、可传输距离远等特点,对大气环境与人体健康危害显著[4-5]。PM2.5的成分较为复杂,包含各种微量元素、地壳元素、水溶性离子及有机碳(OC)、无机碳(EC)等,作为其主要成分的水溶性无机离子(约占PM2.5总质量的30%—80%)不仅会影响降水酸碱性和气候环境,还会通过呼吸直接进入肺部甚至血管,严重危及人体健康[6]。深入探讨PM2.5中水溶性离子的分布特征,对解析PM2.5的理化性质、存在形式、毒理学机制及主要来源等具有重要意义。
目前,已有很多学者开展了我国城市大气PM2.5及其中水溶性离子的研究,如孟琛琛等[7]结合气象要素,发现邯郸市春、夏、秋的三季PM2.5呈酸性,冬季呈碱性;古金霞等[8]研究发现天津市PM2.5中主要水溶性无机离子是
${\rm{SO}}_4^{{2 - }} $ 、${\rm{NO}}_3^{{ - }} $ ,${\rm{NH}}_4^{{+}} $ 和CI−,表现出燃煤污染与机动车尾气污染并存的复合型大气污染特征;刀谞等[9]研究表明大同市PM2.5呈酸性,且以硫酸型污染(燃煤)为主;同年,刀谞等[10]等还通过超声萃取技术报道了我国4个大气背景点PM2.5和PM10中9种水溶性离子季节分布规律;沈振兴等[11]发现西安市PM2.5中11种水溶性离子仅占其总质量的30%,表明二次气溶胶组分能显著影响大气能见度;亚力昆江·吐尔逊等[12]研究表明,乌鲁木齐可吸入颗粒物的主要存在形式是铵盐,采暖期可吸入颗粒物的主要来源为煤烟尘。针对PM2.5中水溶性离子的来源,通常是将相关性分析与主成分分析结合起来进行源解析[13],如张云峰等[14]通过上述两种方法讨论了泉州市PM2.5中水溶性离子的存在形式及来源。除此之外,后向轨迹法也较常用于源解析,如范美益等[15]利用该法阐明了徐州市PM2.5中水溶性离子的主要本地源及传输影响因素等。临汾市一直是我国的能源重化工基地,煤炭及煤化工是其支柱产业。多年以煤、焦、铁等为主的粗放型支柱产业,导致该地区大气环境一直处于严重煤烟型污染状态。从上世纪八九十年代开始,临汾市就被列为世界十大污染城市之一,空气质量综合指数排名长期位居全国168个重点城市的倒数行列 。昔日黄土高原上的“花果城”,如今成为中国空气污染最严重的城市之一。为了改善空气质量,临汾市委市政府采取了多种强有力措施对大气环境质量进行综合整治。但由于临汾市及其周边平川地区,位于汾河谷地,四面环山,属于典型的盆地地理条件,气团易在盆地上空淤积停滞;再加上其全年易出现干旱少雨、静稳甚至逆温等特殊气象条件,更加不利于污染物的扩散,大大影响着其大气自净能力。很多学者将临汾市大气污染的成因归结为以煤化工为主的单一产业结构、以及独特的地理环境与气象条件。2018年,卫兴鹏等[16]采用后向轨迹模式的研究表明,除本地污染外,临汾市冬季大气污染物多受西北方向的产煤区和燃煤供暖区排放污染物传输的影响,夏季受由东南方向输送的局地污染物影响较大。2019年11月,生态环境部发布的《汾渭平原2019—2020年秋冬季大气污染综合治理攻坚行动方案》指出,临汾2020年冬季空气质量改善目标为PM2.5同比下降2%。
目前,对临汾市大气PM2.5中水溶性离子的研究较少。本文采用主成分分析法,讨论了临汾市不同季节PM2.5的浓度和水溶性离子的变化特征,以及不同离子之间的相互关系,解析了其主要来源,研究结果可以为确定临汾市大气中PM2.5的化学组成与污染成因,改善其空气质量提供重要理论指导。
临汾市PM2.5中水溶性离子季节变化特征及来源解析
Seasonal characteristics and source analysis of water-soluble ions in PM2.5 of Linfen City
-
摘要: 利用在线监控平台获得临汾市2019年3月1日至2020年2月29日PM2.5的24 h均值及其中8种水溶性离子(
${\rm{NO}}_3^{{ - }}$ 、${\rm{SO}}_4^{{2 - }}$ 、${\rm{NH}}_4^{{ +}}$ 、Cl−、K+、Na+、Mg2+和Ca2+)的监测数据,分析了PM2.5及水溶性离子浓度的季节变化特征,采用主成分分析法探讨了各种离子的主要来源。结果表明,在研究期内,临汾市PM2.5年均浓度为57 μg·m−3,季节性特征明显,冬季最高,夏季最低,秋季略高于春季;各离子浓度依次为${\rm{NO}}_3^{{ - }} $ >${\rm{SO}}_4^{{2 - }} $ >${\rm{NH}}_4^{{ +}} $ >Cl−>Ca2+>Na+>K+>Mg2+;全年阴阳离子电荷当量的比值为0.86,大气气溶胶呈碱性;${\rm{SO}}_4^{{2 - }} $ 、${\rm{NO}}_3^{{ - }} $ 与${\rm{NH}}_4^{{ +}} $ 是其中的主要水溶性离子,不同季节这3种离子之和占8种离子总量的比例分别为夏季(90.98%)>秋季(88.98%)>冬季(87.58%)>春季(85.68%),存在较强的SO2向${\rm{SO}}_4^{{2 - }} $ 、NO2向${\rm{NO}}_3^{{ - }} $ 的二次转化过程。PM2.5中水溶性离子的主要来源有工业源、生物质燃烧、机动车尾气以及土壤风沙和建筑扬尘等,不同季节各污染源的贡献有较大差别。Abstract: In order to explore the pollution level of PM2.5 and the composition characteristics of main sources of water-soluble ions in Linfen City, the daily average concentration of PM2.5 and eight kinds of water-soluble ions (${\rm{NO}}_3^{{ - }} $ ,${\rm{SO}}_4^{{2 - }} $ ,${\rm{NH}}_4^{{ +}} $ , K+, Na+, Mg2+ and Ca2+) from March 1, 2019 to February 29, 2020 were obtained by using the online monitoring platform. The seasonal variation of PM2.5 and the water-soluble ions were analyzed, and the main sources of water-soluble ions were investigated by the principal component analysis. The results showed that the mass concentration of PM2.5 was 57 μg·m−3 during the research period. The seasonal characteristics are obvious that the mass concentration was the highest in winter, the lowest in summer, and slightly higher in autumn than in spring. Concentration of ions was ranked as:${\rm{NO}}_3^{{ - }} $ >${\rm{SO}}_4^{{2 - }} $ >${\rm{NH}}_4^{{ +}} $ >Cl−>Ca2+>Na+>K+>Mg2+. The annual ratio of the equivalent charge of anion and anion is 0.86, which indicates that the sampled aerosols were alkaline. The ions${\rm{SO}}_4^{{2 - }} $ ,${\rm{NO}}_3^{{ - }} $ and${\rm{NH}}_4^{{ +}} $ were the major water-soluble ions found in PM2.5, and the proportion of the sum of the three ions to the total amount of eight ions in different seasons is respectively in summer (90.98%) > autumn (88.98%) >winter (87.58%) > spring (85.68%). There is a strong secondary conversion process from SO2 to${\rm{SO}}_4^{{2 - }} $ , NO2 to${\rm{NO}}_3^{{ - }} $ . The comprehensive analysis shows that the main sources of water-soluble ions in PM2.5 include industrial sources, biomass combustion, vehicle exhaust, soil sand and construction dust, and the contributions of pollution sources vary greatly in different seasons.-
Key words:
- Linfen /
- PM2.5 /
- water-soluble ions /
- seasonal variation /
- source identification
-
表 1 研究期内汾渭平原主要城市PM2.5浓度(µg·m−3)
Table 1. The seasonal concentration of PM2.5 in major cities of Fen-Wei Plain during the study period (µg·m−3)
序号
Serial number城市
City年均
Average annual春季
Spring夏季
Summer秋季
Autumn冬季
Winter1 咸阳 61 55 27 50 112 2 运城 59 43 30 51 112 3 临汾 57 43 31 47 108 4 西安 55 44 24 49 102 5 洛阳 55 47 28 59 87 6 渭南 53 44 24 47 98 7 三门峡 52 47 27 47 87 8 宝鸡 49 45 19 40 90 9 铜川 45 43 23 39 74 10 晋中 44 38 28 39 70 11 吕梁 37 33 24 34 55 平均值 51 44 26 46 90 注:春季3—5月,夏季6—8月,秋季9—11月,冬季12—2月.
Notes: March to May in spring, June to August in summer, September to November in autumn, December to February in winter .表 2 PM2.5中水溶性离子组分的季节变化(µg·m-3)
Table 2. Seasonal variation of the water-soluble ion components in PM2.5(µg·m-3)
离子组分
Ion components春季
Spring夏季
Summer秋季
Autumn冬季
Winter全年平均
Average annual${\rm{NO}}_3^{{ - }} $ 14.84 9.66 19.26 30.86 18.65 ${\rm{SO}}_4^{{2 - }} $ 9.90 9.34 10.62 26.45 14.08 ${\rm{NH}}_4^{{+}} $ 9.72 6.76 9.26 19.05 11.20 Cl− 2.19 0.67 2.30 5.35 2.63 K+ 0.63 0.23 0.46 1.49 0.70 Na+ 0.92 0.63 0.88 2.26 1.17 Mg2+ 0.22 0.13 0.20 0.27 0.21 Ca2+ 1.79 0.89 1.01 1.46 1.29 总计 40.21 28.32 43.98 87.19 49.93 表 3 PM2.5中水溶性离子间的相关系数
Table 3. Correlations coefficients for the concentrations of water-soluble ions in PM2.5
离子 Ions PM2.5 ${\rm{NO}}_3^{{ - }} $ ${\rm{SO}}_4^{{2 - }} $ ${\rm{NH}}_4^{{ + }} $ Cl− K+ Na+ Mg2+ Ca2+ PM2.5 1 ${\rm{NO}}_3^{{ - }} $ 0.896** 1 ${\rm{SO}}_4^{{2 - }} $ 0.872** 0.772** 1 ${\rm{NH}}_4^{{ + }} $ 0.923** 0.918** 0.918** 1 Cl− 0.742** 0.696** 0.589** 0.681** 1 K+ 0.412** 0.399** 0.408** 0.434** 0.777** 1 Na+ 0.252** 0.271** 0.237** 0.282** 0.723** 0.800** 1 Mg2+ −0.001 0.046 0.061 0.093 0.478** 0.809** 0.824** 1 Ca2+ −0.055 −0.058 −0.047 −0.037 0.428** 0.623** 0.782** 0.819** 1 **表示相关性在0.01水平显著(双侧).
** Indicates significant correlation at 0.01 level (bilateral).表 4 PM2.5中水溶性离子的正交旋转因子载荷矩阵
Table 4. Varimax rotated factor loading matrix for the water-soluble ions in PM2.5
年均值
Average annual春季
Spring夏季
Summer秋季
Autumn冬季
Winter离子
Ions因子1
Factor1因子2
Factor2因子1 Factor1 因子2 Factor2 因子1 Factor1 因子2 Factor2 因子3 Factor3 因子1 Factor1 因子2 Factor2 因子1 Factor1 因子2 Factor2 ${\rm{NO}}_3^{{ - }} $ 0.056 0.942 0.361 0.849 0.933 −0.054 0.067 0.814 −0.35 0.892 −0.16 ${\rm{SO}}_4^{{2 - }} $ 0.044 0.920 0.432 0.785 0.930 −0.045 0.146 0.374 −0.712 0.862 −0.236 ${\rm{NH}}_4^{{ + }}$ 0.074 0.977 0.450 0.875 0.968 −0.09 0.119 0.782 −0.573 0.905 −0.287 Cl- 0.597 0.698 0.960 −0.037 0.477 0.72 0.243 0.876 0.28 0.889 0.146 K+ 0.836 0.404 0.969 −0.176 0.262 0.769 −0.504 0.902 0.198 0.809 0.279 Na+ 0.917 0.228 0.963 −0.240 0.052 0.775 −0.584 0.869 0.373 0.104 0.861 Mg2+ 0.944 −0.007 0.939 −0.284 −0.257 0.682 0.555 0.325 0.807 0.572 0.7 Ca2+ 0.911 −0.134 0.878 −0.383 −0.306 0.753 0.408 −0.015 0.724 −0.289 0.833 解释方差/% 56.579 31.399 61.989 30.223 39.123 34.446 14.604 48.218 29.877 52.817 27.34 累积解释方差/% 56.579 87.978 61.989 92.212 39.123 73.569 88.173 48.218 78.095 52.817 80.157 注:黑体字对应在某一因子中具有更高载荷值的元素.
Note: Boldface corresponds to elements with higher load values in a factor. -
[1] 刘晟东, 史君楠, 程勇, 等. 中国典型城市群PM2.5污染特征研究进展 [J]. 环境科学研究, 2020, 33(2): 243-251. LIU S D, SHI J N, CHENG Y, et al. Review of pollution characteristics of PM2.5 in Chinese representative megacities [J]. Research of Environmental Sciences, 2020, 33(2): 243-251(in Chinese).
[2] ZHU Y H, HUANG L, LI J Y, et al. Sources of particulate matter in China: Insights from source apportionment studies published in 1987—2017 [J]. Environment International, 2018, 115: 343-357. [3] HAN L, ZHOU W, LI W, et al. Impact of urbanization level on urban air quality: A case of fine particles (PM2.5) in Chinese cities [J]. Environmental Pollution, 2014, 194: 163-170. doi: 10.1016/j.envpol.2014.07.022 [4] 宋英石, 李锋, 徐新雨, 等. 城市空气颗粒物的来源、影响和控制研究进展 [J]. 环境科学与技术, 2013, 36(S6): 214-221. SONG Y S, LI F, XU X Y, et al. Research progress on source, impact and control measurements of particulate matter in the urban air [J]. Environmental Sciences & Technology, 2013, 36(S6): 214-221(in Chinese).
[5] HU J L, WU L, ZHENG B, et al. Source contributions and regional transport of primary particulate matter in China [J]. Environmental Pollution, 2015, 207: 31-42. doi: 10.1016/j.envpol.2015.08.037 [6] SILVA F S, CRISTATE J, ANDRE P A, et al. PM2.5 and PM10: The influence of sugarcane burning on potential cancer risk [J]. Atmospheric Environment, 2010, 44(39): 5133-5138. doi: 10.1016/j.atmosenv.2010.09.001 [7] 孟琛琛, 王丽涛, 张芬芬, 等. 邯郸市PM2.5中水溶性无机离子污染特征及来源解析 [J]. 环境科学学报, 2015, 35(11): 3443-3451. MENG C C, WANG L T, ZHANG F F, et al. Pollution characteristics and source apportionment of water-soluble inorganic ions in PM2.5 in Handan City [J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3443-3451(in Chinese).
[8] 古金霞, 吴丽萍, 霍光耀, 等. 天津市PM2.5中水溶性无机离子污染特征及来源分析 [J]. 中国环境监测, 2013, 29(3): 30-34. GU J X, WU L P, HUO G Y, et al. Pollution character and source of water-soluble inorganic ions in PM2.5 over Tianjin [J]. Environmental Monitoring in China, 2013, 29(3): 30-34(in Chinese).
[9] 刀谞, 张霖琳, 王超, 等. 大同市大气颗粒物浓度与水溶性离子季度分布特征 [J]. 中国环境监测, 2015, 31(3): 43-51. DAO X, ZHANG L L, WANG C, et al. Characteristics of mass and water-soluble ionic compounds of atmospheric fine particles in four quarters of Datong [J]. Environmental Monitoring in China, 2015, 31(3): 43-51(in Chinese).
[10] 刀谞, 王超, 张霖琳, 等. 我国4个大气背景点环境空气颗粒物(PM2.5、PM10)中水溶性离子分布特征 [J]. 环境化学, 2015, 34(6): 1095-1102. doi: 10.7524/j.issn.0254-6108.2015.06.2014103101 DAO X, WANG C, ZHANG L L, et al. Characteristrics of mass and water-soluble ionic compounds in atmospheric particles(PM2.5, PM10) of four national atmospheric backgrounds [J]. Environmental Chemistry, 2015, 34(6): 1095-1102(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.06.2014103101
[11] 沈振兴, 李丽珍, 杜娜, 等. 西安市春季大气细粒子的质量浓度及其水溶性组分的特征 [J]. 生态环境学报, 2007, 16(4): 1193-1198. doi: 10.3969/j.issn.1674-5906.2007.04.025 SHEN Z X, LI L Z, DU N, et, al. Mass concentration and water-soluble ions in spring aerosol (PM2.5) at xi’an [J]. Ecology and Environmental Sciences., 2007, 16(4): 1193-1198(in Chinese). doi: 10.3969/j.issn.1674-5906.2007.04.025
[12] 亚力昆江·吐尔逊, 迪丽努尔·塔力甫, 阿布力孜·伊米提, 等. 乌鲁木齐市可吸入颗粒物水溶性离子特征及来源解析 [J]. 中国环境监测, 2012, 28(1): 77. YALIKUNJIANG TURSUN, DILINUER TALIPU, ABULIZI YIMITI, et al. Characterization and source contributions of water-soluble ionic components of inhabitable atmospheric particles in Urumqi [J]. Environmental Monitoring in China, 2012, 28(1): 77(in Chinese).
[13] QIAO X, YING Q, LI X H, et al. Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented community multiscale air quality model [J]. Science of the Total Environment, 2018, 612(1): 462-471. [14] 张云峰, 于瑞莲, 胡恭任, 等. 泉州市大气PM2.5中水溶性离子季节变化特征及来源解析 [J]. 环境科学, 2017, 38(10): 60-69. ZHANG Y F, YU R L, HU G R, et al. Seasonal variation and source apportionment of water-soluble ions in PM2.5 in Quanzhou City [J]. Environmental Science, 2017, 38(10): 60-69(in Chinese).
[15] 范美益, 曹芳, 张园园, 等. 徐州市冬季大气细颗粒物水溶性无机离子污染特征及来源解析 [J]. 环境科学, 2017, 38(11): 34-41. FAN Y M, CAO F, ZHANG Y Y, et al. Characteristics and sources of water-soluble inorganic ions in fine particulate matter during winter in Xuzhou [J]. Environmental Science, 2017, 38(11): 34-41(in Chinese).
[16] 卫兴鹏, 赵欣蓉. 基于轨迹模式的临汾市大气污染物来源分析 [J]. 云南化工, 2018, 45(8): 195. WEI X P, ZHAO X R. Source analysis of air pollutant in Linfen City based on Trajectory model [J]. Yunnan Chemical Technology, 2018, 45(8): 195(in Chinese).
[17] 林瑜, 叶芝祥, 杨怀金, 等. 成都市西南郊区春季大气 PM2.5的污染水平及来源解析 [J]. 环境科学, 2016, 37(5): 1629-1638. LIN Y, YE Z X, YANG H J, et al. Pollution level and source apportionment of atmospheric particles PM2.5 in southwest suburb of Chengdu in Spring [J]. Environmental Science, 2016, 37(5): 1629-1638(in Chinese).
[18] WEI N, XU Z, LIU J, et al. Characteristics of size distributions and sources of water-soluble ions in Lhasa during monsoon and non-monsoon seasons [J]. Journal of Environmental Sciences, 2019, 82(8): 155-168. [19] AGARWAL A, SASTANGI A, LAKHANI A, et al. Seasonal and spatial variability of secondary inorganic aerosols in PM2.5 at Agra: Source apportionment through receptor models [J]. Chemosphere, 2020, 242(3): 1-13. [20] HJ 799—2016, 环境空气颗粒物中水溶性阴离子(F−、Cl−、Br−、$ {{\rm{NO}}_2^{{ - }} }$、${\rm{NO}}_3^{{ - }} $、${\rm{PO}}_4^{{ 3- }} $、${\rm{SO}}_3^{{ 2- }} $、${\rm{SO}}_4^{{ 2- }} $)的测定离子色谱法 [S]. 北京: 国家环境保护部, 2016. HJ 799—2016, Ambient air-determination of the water soluble anions (F−, Cl−, Br−,${\rm{NO}}_2^{{ - }} $, ${\rm{NO}}_3^{{ - }} $, ${\rm{PO}}_4^{{ 3- }} $, ${\rm{SO}}_3^{{ 2- }} $, $ {\rm{SO}}_4^{{ 2- }}$) from atmospheric particles-ion chromatography [S].Beijing: National Ministry of Environmental Protection, 2016 (in Chinese).
[21] HJ 800—2016, 环境空气颗粒物中水溶性阳离子(Li+、Na+、NH4+、K+、Ca2+、Mg2+)的测定离子色谱法 [S], 北京: 国家环境保护部, 2016. HJ 800—2016, Ambient air-determination of the water soluble anions (Li+, Na+, NH4+, K+, Ca2+, Mg2+) from atmospheric particles-ion chromatography [S] , BeiJing: National Ministry of Environmental Protection, 2016 (in Chinese).
[22] GAO J J, WANG K, WANG Y, et al. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China [J]. Environmental Pollution, 2018, 233: 714-724. [23] HE Q S, YAN Y L, GUO L L, et al. Characterization and source analysis of water-soluble inorganic ionic species in PM2.5 in Taiyuan city, China [J]. Atmospheric Research, 2017, 184: 48-55. [24] QIAO B, CHEN Y, TIAN M, et al. Characterization of water soluble inorganic ions and their evolution processes during PM2.5 pollution episodes in a small city in southwest China [J]. Science of the Total Environment, 2019, 650: 2605-2613. [25] GAO J, PENG X, CHEN G, et al. Insights into the chemical characterization and sources of PM2.5 in Beijing at a 1-h time resolution [J]. Science of the Total Environment, 2016, 542: 162-171. doi: 10.1016/j.scitotenv.2015.10.082 [26] 孙有昌, 姜楠, 王申博, 等. 安阳市大气PM2.5中水溶性离子季节特征及来源解析 [J]. 环境科学, 2020, 41(1): 75-81. SUN Y C, JIANG N, WANG S B, et al. Seasonal characteristics and source analysis of water-soluble ions in PM2.5 of Anyang City [J]. Environmental Science, 2020, 41(1): 75-81(in Chinese).
[27] 傅致严, 罗达通, 刘湛, 等. 郴州市大气细颗粒物中水溶性离子的污染特征及来源分析 [J]. 环境化学, 2018, 37(12): 2774-2783. FU Z Y, LUO D T, LIU Z, et al. Pollution characteristics and sources of water-soluble ions in fine particulate matter in Chenzhou [J]. Environmental Chemistry, 2018, 37(12): 2774-2783(in Chinese).
[28] Environmental Chemistry. Influences of atmospheric pollution on the contributions of major oxidation pathways to PM2.5 nitrate formation in Beijing [J]. John Wiley & Sons, Ltd, 2019, 124(7): 4174-4185. [29] XUE J, YUAN Z B, LAU A K H, et al. Insights into factors affecting nitrate in PM2.5 in a polluted high NOx environment through hourly observations and size distribution measurements [J]. Journal of Geophysical Research-Atmospheres, 2014, 119(8): 4888-4902. [30] 闫广轩, 张靖雯, 雷豪杰, 等. 郑州市大气细颗粒物中水溶性离子季节性变化特征及其源解析 [J]. 环境科学, 2019, 40(4): 1545-1552. YAN G X, ZHANG J W, LEI H J, et al. Seasonal variation and source analysis of water-soluble inorganic ions in fine particulate matter in Zhengzhou [J]. Environmental Science, 2019, 40(4): 1545-1552(in Chinese).
[31] 王念飞, 陈阳, 郝庆菊, 等. 苏州市PM2.5中水溶性离子的季节变化及来源分析 [J]. 环境科学, 2016, 37(12): 4482-4489. WANG N F, CHEN Y, HAO Q J, et al. Seasonal variation and source analysis of the water-soluble inorganic ions in fine particulate matter in Suzhou [J]. Environmental Science, 2016, 37(12): 4482-4489(in Chinese).
[32] YANG Y J, ZHOU R YAN Y Y, et al. Seasonal variations and size distributions of water-soluble ions of atmospheric particulate matter at Shigatse, Tibetan Plateau [J]. Chemosphere, 2016, 145(FEB.): 560-567. [33] 闫广轩, 樊静, 王跃思, 等. 新乡市秋季大气细颗粒物PM25中水溶性离子特征及其来源解析 [J]. 环境科学学报, 2018, 38(2): 640-648. YAN G X, FAN J, WANG Y S, et al. Characterization and source analysis of the water-soluble inorganic ions in PM2.5 of Xinxiang during Autumn [J]. Acta Scientiae Circumstantiae, 2018, 38(2): 640-648(in Chinese).
[34] 蔡敏, 严明良, 包云轩, 等. 苏州市大气PM25中水溶性无机离子的源解析及其气象因子分析 [J]. 气象科学, 2018, 38(5): 648-658. doi: 10.3969/2017jms.0021 CAN M, YAN M L, BAO Y X, et al. Source apportionment of water-soluble inorganic ions in PM2.5 in the Suzhou atmosphere and its application to meteorological factor analysis [J]. Journal of the Meteorological Sciences, 2018, 38(5): 648-658(in Chinese). doi: 10.3969/2017jms.0021
[35] SAXENA M, SHARMA A, SEN A, et al. Water soluble inorganic species of PM10 and PM2.5 at an urban site of Delhi, India: Seasonal variability and sources [J]. Atmospheric Research, 2017, 184(2): 112-125. [36] LI L L, TAN Q W, ZHANG Y H, et al. Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China [J]. Environmental Pollution, 2017, 230: 718-729. doi: 10.1016/j.envpol.2017.07.029 [37] QIAO X, YING Q, LI X, et al. Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model [J]. Science of the Total Environment, 2017, 612(15): 462-471. [38] LI X R, WANG L L, JI D S, et al. Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: Spatial/temporal variability, size distribution and sources [J]. Atmospheric Environment, 2013, 77(10): 250-259.