-
在过去几十年间,我国经济发展迅速,同时由于缺乏足够的大气环境保护措施使得大气污染日益严重,雾霾频繁发生。大气颗粒物(atmospheric particulate matter)是我国大多数地区大气污染的首要污染物,也称为大气气溶胶(atmospheric aerosol),是大气中复杂组分组成的固体和液体颗粒物[1]。其环境效应和健康效应主要体现在通过与太阳和陆地辐射的相互作用影响全球气候变化,高浓度颗粒物的长期暴露给人体健康带来巨大风险,这些都使得颗粒物逐渐成为民众关注的焦点[2-3]。另外,大气颗粒物携带大量生物有机体和病原体(花粉、孢子、细菌、病毒等)[4],导致呼吸道疾病、心血管疾病、肺功能下降或过早死亡等健康风险[5]。
有机污染物是大气颗粒物的主要组成部分,约占颗粒物的20%—50%,在重污染事件中有机物对颗粒物的贡献>50%[6-7],同时有机物也是颗粒物组成中影响能见度的最重要组分[8]。大气颗粒物中有机物成分复杂,来源广泛,含有大量对人体有长期毒性、致癌性、致畸性的化合物,然而目前只有少部分能被现有的分析技术所检测,如多环芳烃(PAHs)、有机氯农药(OCPs)、多氯联苯(PCBs)、多氯联苯并对二噁英和呋喃(PCDD/Fs)[9]。目前对大气颗粒物中有机污染物的浓度、构成、形成机制的认识程度远不及硝酸盐、硫酸盐、铵盐等其它成分。尚未对大气颗粒物中有机污染物的分析方法和污染特征进行的系统综述,而这些恰恰是颗粒物毒性效应研究的重要基础。本文将对大气颗粒物中有机污染物的样品前处理和仪器分析方法,时空分布特征和气粒分布特征进行详细综述,为相关研究提供参考和依据。
大气颗粒物中典型有机物的分析方法和污染特征研究进展
Research progress of analytical methods and pollution characteristics of typical organic pollutant in atmospheric particulate matter
-
摘要: 有机污染物是大气颗粒物的重要组成部分,约占颗粒物质量的20%—50%。颗粒物中的有机污染物具有高毒性,长期暴露能够给人群带来潜在的健康风险;有机污染物参与气溶胶成核,影响空气质量和能见度,进而改变区域气候,其引起的健康与环境效应已成为民众关注的焦点。大气颗粒物中有机污染物的分析技术是准确判断其来源和污染特征的重要一环。本文对颗粒物中常见有机污染物的分析技术、污染特征及主要来源进行了综述。系统介绍了有机污染物的样品采样、提取净化和分离分析技术,对比了不同分析方法的优势,总结了我国大气颗粒物中有机污染物的时空分布和气粒分配特征,并探讨了引起相关差异的原因,为后续深入认识大气颗粒物中有机污染物的分布特征提供参考。最后,对大气颗粒物中有机物的分析技术和发展方向进行了总结与展望。Abstract: Organic pollutant is an important component of atmospheric particulate matter, accounting for about 20%—50% of the mass of particulate matter. Long-term exposure to organic pollutant can bring potential health risks to people. Organic pollutants are involved in aerosol nucleation, which can affect air quality and visibility, and thus influence the regional climate. The health and environmental effects caused by organic pollutants have become the focus of public attention. The analysis technology of organic pollutants in atmospheric particulates is an important part of accurately determining the pollution characteristics. The present review summarized the analysis techniques, pollution characteristics and the main sources of the common organic pollutants in particulate matter. The sampling, pretreatment and detection techniques of common organic pollutants were systematically introduced, the advantages and disadvantages of different methods were compared, the spatial-temporal and gas-particle distribution characteristics of organic pollutants in particulate matter were summarized and the causes of the related differences were discussed. Finally, the future development of the analysis technology of organic matter in atmospheric particulates was forecasted.
-
表 1 不同溶剂提取方法比较
Table 1. Comparison of different solvent extraction methods
方法
Method原理
Principle常用试剂
Common reagents特点
Characteristic索氏提取法[26] 利用有机溶剂萃取原理达到目标物与其他组分高效分离 二氯甲烷、乙腈、苯、环己烷等 EPA规定的标准提取方法,萃取效率高,但耗时、耗溶剂、操作比较麻烦 加速溶剂萃取法[27] 提高温度和压力的条件用有机溶剂萃取的自动化方法 二氯甲烷,乙腈,环己烷,乙醇,丙酮等 溶剂用量少,快速,效率高,被EPA选定为推荐的标准方法 超声波提取法[28] 利用超声波技术达到混合物分离 二氯甲烷,乙腈, 环己烷,乙醇, 丙酮等 溶剂用量少、提取效率高 微波提取法[29-30] 以微波技术达到混合物分离 二氯甲烷,乙腈,环己烷,乙醇等 快速、高效,易于控制,可保持分析对象的原本化合物状态 超临界流体萃取法[31] 利用超临界流体渗透到固体内部使被测组分溶解 CO2超临界流体、水 溶剂消耗量少、回收率高、易于控制 表 2 我国大气颗粒物中有机污染物特征
Table 2. Characteristics of organic pollutants in atmospheric particulates in China
城市City OC/(μg·m−3) PAHs/(ng·m−3) PCDD/Fs/(fg-WHO2005−TEQ·m−3) PBDEs/(pg·m−3) SCCPs/(ng·m−3) 北方地区 北京:(14.0±11.7)[77]
天津:(25.27±12.43) [78]
济南:(34.35±18.76) [72]
长春:(40.4±7.04)[79]北京:87.6[54]
青岛:86.5[80]
天津:156.09[71]
石家庄:494.72[71]
长春:80.4[81]北京:150.9 pg·m−3[44]
天津:62[82]
哈尔滨:43[82]
沈阳:54[82]
石家庄:119[82]
济南:84[82]北京:150.8 [44]
大连:59.5[83]
德州:139.7[83]
烟台:49.8[83]北京:14.9[84]
济南:38.7[75]
淄博:142.7[85]南方 重庆:(16.3±7.6)[86]
南充:(10.1±7.8)[87]
广州:(24.2±22.1)[79]
三亚:(3.4±1.8)[88]南京:8.35[89]
广州:8.33[90]
东莞:69.7[91]
三亚:9.9[88]南京:49.7[92]
杭州:46[92]
广州:33.2[92]
台州:223.3[93]绵阳:9.78[94]
长三角:14[95]
深圳:33.47[96]
上海:86.4[97]佛山:14.8[98]
肇庆:11.3[98]
广州:12.5[98]东部沿海 青岛:(26.3±10.3)[79]
上海:(12.0±5.8)[99]
厦门:(15.5±5.7)[79]厦门:10.69[100]
上海:12.3[99]三亚:16.6[92]
深圳:26.9[92]
上海:2.3[17]青岛:3.36[94]
厦门:2.09[94]
广州:175[94]大连:1.84[76]
深圳:30.4[98]东部内陆 武汉:(33.8±15.8)[79]
北京:(23.9±12.4)[79]武汉:63.9[101] 武汉:53.5[92]
长沙:45.7[92]武汉:13.1[102]
南昌:3.39[94]西部 西安:(95.8±27.2)[79] 兰州:201[103]
西安:57.1[104]
新疆:60.33[105]呼和浩特:54[82]
兰州:76[82]
贵阳:38.6[92]西安:15.8[106]
银川:76[83]
武威:40.5[83]
昆明:2.75 [94]偏远 拉萨:3.27 [107] 鲁朗:6.2[108] 拉萨:46 [82] -
[1] HUANG D, HUA X, XIU G L, et al. Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter [J]. Analytica Chimica Acta, 2017, 989: 1-14. doi: 10.1016/j.aca.2017.07.042 [2] JIMENEZ O P, PASTOR R M, ALONSO S G. Assessment uncertainty associated to the analysis of organic compounds linked to particulate matter of atmospheric aerosols [J]. Talanta, 2010, 80(3): 1121-1128. doi: 10.1016/j.talanta.2009.08.036 [3] FIORE A M, NAIK V, LEIBENSPERGER E M. Air quality and climate connections [J]. Journal of the Air & Waste Management Association, 2015, 65(6): 645-685. [4] POSCHL U. Atmospheric aerosols: Composition, transformation, climate and health effects [J]. Angewande Chemie International Edition, 2005, 44(46): 7520-7540. doi: 10.1002/anie.200501122 [5] KIM K H, KABIR E, KABIR S. A review on the human health impact of airborne particulate matter [J]. Environment International, 2015, 74: 136-143. doi: 10.1016/j.envint.2014.10.005 [6] 李杏茹, 白羽, 陈曦, 等. 北京冬季重污染过程大气细颗粒物化学组成特征及来源分析 [J]. 环境化学, 2018, 37(11): 2397-2409. doi: 10.7524/j.issn.0254-6108.2018011401 LI X R, BAI Y, CHEN X, et al. Chemical composition and source apportionment of PM2.5 during winter in Beijing [J]. Environmental Chemistry, 2018, 37(11): 2397-2409(in Chinese). doi: 10.7524/j.issn.0254-6108.2018011401
[7] TURPIN B J, ANDREWS E S P. Measuring and simulating particulate organics in the atmosphere: Problems and prospects [J]. Atmospheric Environment, 2000, 34(18): 2983-3013. doi: 10.1016/S1352-2310(99)00501-4 [8] FU X, WANG X, HU Q, et al. Changes in visibility with PM2.5 composition and relative humidity at a background site in the Pearl River Delta region [J]. Journal of Environmental Sciences, 2016, 40: 10-19. doi: 10.1016/j.jes.2015.12.001 [9] 张婷婷, 马文林, 亓学奎, 等. 北京城区PM2.5有机碳和元素碳的污染特征及来源分析 [J]. 环境化学, 2018, 37(12): 2758-2766.ZHANG T T, MA W L, QI X K, et al. Characteristics and sources of organic carbon and element carbon in PM2.5 in the urban areas of Beijing [J]. Environmental Chemistry, 2018, 37(12): 2758-2766 (in Chinese). [10] SAARIKOSKI S, TIMONEN H, SAARNIO K, et al. Sources of organic carbon in fine particulate matter in northern European urban air [J]. Atmospheric Chemistry and Physics, 2008, 8(20): 6281-6295. doi: 10.5194/acp-8-6281-2008 [11] ASWINI A R, HEGDE P, NAIR P R. Carbonaceous and inorganic aerosols over a sub-urban site in peninsular India: Temporal variability and source characteristics [J]. Atmospheric Research, 2018, 199: 40-53. doi: 10.1016/j.atmosres.2017.09.005 [12] SATSANGI A, PACHAURI T, SINGLA V, et al. Organic and elemental carbon aerosols at a suburban site [J]. Atmospheric Research, 2012, 113: 13-21. doi: 10.1016/j.atmosres.2012.04.012 [13] ZHENG M, CASS G R, SCHAUER J, et al. Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers [J]. Environmental Science & Technology, 2002, 36(11): 2361-2371. [14] 董雪玲, 袁杨森. 大气可吸入颗粒物中有机污染物的研究进展 [J]. 资源与产业, 2006, 8(6): 87-90. doi: 10.3969/j.issn.1673-2464.2006.06.025 DONG X L, YUAN Y S. study progress on organic pollution in inhalable particles in atmosphere [J]. Resource & Industries, 2006, 8(6): 87-90(in Chinese). doi: 10.3969/j.issn.1673-2464.2006.06.025
[15] GIORIO C, TAPPARO A, DALL'OSTO M, et al. Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra [J]. Environmental Science & Technology, 2015, 49(6): 3330-3340. [16] 祁士华, 邢新丽, 李军, 等. 大气中持久性有机污染物(POPs)研究进展 [J]. 海峡科学, 2013(8): 29-32. doi: 10.3969/j.issn.1673-8683.2013.08.008 QI S H, XING X L, LI J, et al. Advances in research on persistent organic pollutants (POPs) in the atmosphere [J]. Straits Science, 2013(8): 29-32(in Chinese). doi: 10.3969/j.issn.1673-8683.2013.08.008
[17] DIE Q, NIE Z, LIU F, et al. Seasonal variations in atmospheric concentrations and gas–particle partitioning of PCDD/Fs and dioxin-like PCBs around industrial sites in Shanghai, China [J]. Atmospheric Environment, 2015, 119: 220-227. doi: 10.1016/j.atmosenv.2015.08.022 [18] YANG G, GUO X, JI H, et al. Potential threat of heavy metals and PAHs in PM2.5 in different urban functional areas of Beijing [J]. Atmospheric Research, 2016, 178: 6-16. [19] MASIH J, SINGHVI R, KUMAR K, et al. Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a Semi Arid Tract of Northern India [J]. Aerosol and Air Quality Research, 2012, 12(4): 515-25. doi: 10.4209/aaqr.2011.11.0192 [20] LI H, FU J, PAN W, et al. Environmental behaviour of short-chain chlorinated paraffins in aquatic and terrestrial ecosystems of Ny-Alesund and London Island, Svalbard, in the Arctic [J]. Science of the Total Environment, 2017, 590-591: 163-70. doi: 10.1016/j.scitotenv.2017.02.192 [21] GLUGE J, WANG Z, BOGDAL C, et al. Global production, use, and emission volumes of short-chain chlorinated paraffins - A minimum scenario [J]. Science of the Total Environment, 2016, 573: 1132-1146. doi: 10.1016/j.scitotenv.2016.08.105 [22] JIANG W, CHEN H, HUANG T, et al. Tagged sources of short-chain chlorinated paraffins in China's marine environment and fish [J]. Chemosphere, 2019, 229: 358-365. doi: 10.1016/j.chemosphere.2019.04.144 [23] 谈静, 刘琼玉, 姜郡亭, 等. 大气颗粒物化学组分分析技术研究进展 [J]. 江汉大学学报(自然科学版), 2014, 42(6): 9-14. TAN J, LIU Q Y, JIANG J T, et al. Research progress of chemical composition analysis technology for atmospheric particulates [J]. Journal of Jianghan University (Natural Science Edition), 2014, 42(6): 9-14(in Chinese).
[24] 朱青青, 刘国瑞, 张宪, 等. 大气中持久性有机污染物的采样技术进展 [J]. 生态毒理学报, 2016, 11(2): 50-60. ZHU Q Q, LIU G R, ZHANG X, et al. Progress on the sampling techniques of persistent organic pollutants in atmosphere [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 50-60(in Chinese).
[25] 焦瑞, 张金生, 李丽华. 大气中细颗粒物(PM2.5)中有机碳的研究进展 [J]. 环境科技, 2013, 26(2): 75-78. doi: 10.3969/j.issn.1674-4829.2013.02.019 JIAO R, ZHANG J S, LI L H. Research progress on the organic carbon of the fine particulate matter (PM2.5) in the atmosphere [J]. Environmental Science and Technology, 2013, 26(2): 75-78(in Chinese). doi: 10.3969/j.issn.1674-4829.2013.02.019
[26] YADAV I C, DEVI N L, LI J, et al. Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: Implication on source apportionment and toxicological effect [J]. Science of the Total Environment, 2018, 616-617: 223-235. doi: 10.1016/j.scitotenv.2017.10.313 [27] CHEN Q, CHEN Y, LUO X S, et al. Seasonal characteristics and health risks of PM2.5-bound organic pollutants in industrial and urban areas of a China megacity [J]. Journal of Environmental Management, 2019, 245: 273-281. [28] MA X, WANG Y, GAO W, et al. Air-seawater gas exchange and dry deposition of chlorinated paraffins in a typical Inner Sea (Liaodong Bay), north China [J]. Environmental Science & Technology, 2018, 52(14): 7729-7735. [29] DING S, DONG F, WANG B, et al. Polychlorinated biphenyls and organochlorine pesticides in atmospheric particulate matter of northern China: Distribution, sources, and risk assessment [J]. Environmental Science and Pollution Research, 2015, 22(21): 17171-17181. doi: 10.1007/s11356-015-4949-x [30] COSCOLLA C, CASTILLO M, PASTOR A, et al. Determination of 40 currently used pesticides in airborne particulate matter (PM10) by microwave-assisted extraction and gas chromatography coupled to triple quadrupole mass spectrometry [J]. Analytica Chimica Acta, 2011, 693(1/2): 72-81. [31] TIAN L, YIN S, MA Y, et al. Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves: Morphological characteristics have the greatest impact [J]. Science of the Total Environment, 2019, 652: 1149-1155. doi: 10.1016/j.scitotenv.2018.10.357 [32] 范茜茜, 史咲頔, 邱兴华, 等. 二级热脱附结合气相色谱-质谱联用分析大气细颗粒物中多环芳烃类污染物 [J]. 环境科学学报, 2018, 38(6): 2304-2311. FAN Q Q, SHI X D, QIU X H, et al. Measurement of polycyclic aromatic hydrocarbons (PAHs) in ambient fine particulate matter using thermal desorption coupled with gas chromatography-mass spectrometry [J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2304-2311(in Chinese).
[33] DO D H, WALGRAEVE C, AMARE A N, et al. Airborne volatile organic compounds in urban and industrial locations in four developing countries [J]. Atmospheric Environment, 2015, 119: 330-338. doi: 10.1016/j.atmosenv.2015.08.065 [34] FLORES R M, MERTOGLU E. Optimization of a thermal desorption-gas chromatography/mass spectrometry method for characterization of semi-volatile organic compounds in high time resolved PM2.5 [J]. Atmospheric Pollution Research, 2020, 11(3): 619-629. doi: 10.1016/j.apr.2019.12.016 [35] DROOGE B L V, NIKOLOVA I, BALLESTA P P. Thermal desorption gas chromatography–mass spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from ambient air particulate matter [J]. Journal of Chromatography A, 2009, 1216(18): 4030-4039. doi: 10.1016/j.chroma.2009.02.043 [36] LI W L, LIU L Y, SONG W W, et al. Five-year trends of selected halogenated flame retardants in the atmosphere of northeast China [J]. Science of the Total Environment, 2016, 539: 286-293. doi: 10.1016/j.scitotenv.2015.09.001 [37] MARI M, SCHUHMACHER M, FELIUBADALO J, et al. Air concentrations of PCDD/Fs, PCBs and PCNs using active and passive air samplers [J]. Chemosphere, 2008, 70(9): 1637-1643. doi: 10.1016/j.chemosphere.2007.07.076 [38] WANG W, SIMONICH S, GIRI B, et al. Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, north China [J]. Science of the Total Environment, 2011, 409(15): 2942-2950. doi: 10.1016/j.scitotenv.2011.04.021 [39] 林星辰, 余彬彬, 叶丹霞. 固相萃取技术新发展及其在环境分析中的应用 [J]. 化工时刊, 2014, 28(9): 28-34. doi: 10.3969/j.issn.1002-154X.2014.09.009 LIN X C, YU B B, YE D X. New development of solid phase extraction and application in environmental analysis [J]. Chemical Industry Times, 2014, 28(9): 28-34(in Chinese). doi: 10.3969/j.issn.1002-154X.2014.09.009
[40] 李申杰, 杨炳建, 陈荣枫, 等. 固相萃取-高分辨气相色谱/质谱联用法同时检测大气中39种持久性有机污染物 [J]. 分析试验室, 2016, 35(6): 717-721. LI S J, YANG B J, CHEN R F, et al. Simultaneous determination of 39 persistent organic pollutants in atmospheric samples by SPE HRGC/HRMS [J]. Chinese Journal of Analysis Laboratory, 2016, 35(6): 717-721(in Chinese).
[41] 孙海红, 钱叶苗, 宋相丽, 等. 固相萃取技术的应用与研究新进展 [J]. 现代化工, 2011, 31(S2): 21-4,6. SUN H H, QIAN Y M, SONG X L, et al. New progress and application of solid phase extraction technology [J]. Modern Chemical Industry, 2011, 31(S2): 21-4,6(in Chinese).
[42] 王敏, 叶非. 凝胶渗透色谱在农药残留分析前处理中的应用进展 [J]. 农药科学与管理, 2008(6): 9-13,15. doi: 10.3969/j.issn.1002-5480.2008.06.004 WANG M, YE F. Application of gel permeation chromatography in sample preparation of pesticide residue analysis [J]. Pesticide Science and Administration, 2008(6): 9-13,15(in Chinese). doi: 10.3969/j.issn.1002-5480.2008.06.004
[43] ZHANG X, ZHENG M, LIANG Y, et al. Particle size distributions and gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in ambient air during haze days and normal days [J]. Science of the Total Environment, 2016, 573: 876-882. doi: 10.1016/j.scitotenv.2016.08.198 [44] CAO R, ZHANG H, ZHAO L, et al. Hazy weather-induced variation in environmental behavior of PCDD/Fs and PBDEs in winter atmosphere of a north China megacity [J]. Environmental Science & Technology, 2018, 52(15): 8173-8182. [45] CHEN L, HUANG Y, HAN S, et al. Sample pretreatment optimization for the analysis of short chain chlorinated paraffins in soil with gas chromatography-electron capture negative ion-mass spectrometry [J]. Journal of Chromatography A, 2013, 1274: 36-43. doi: 10.1016/j.chroma.2012.12.010 [46] ZHAO X, CUI T, GUO R, et al. A clean-up method for determination of multi-classes of persistent organic pollutants in sediment and biota samples with an aliquot sample [J]. Analytica Chimica Acta, 2019, 1047: 71-80. doi: 10.1016/j.aca.2018.10.011 [47] LI H, FENG J, SHENG G, et al. The PCDD/F and PBDD/F pollution in the ambient atmosphere of Shanghai, China [J]. Chemosphere, 2008, 70(4): 576-83. doi: 10.1016/j.chemosphere.2007.07.001 [48] KUZU S L. Compositional variation of PCBs, PAHs, and OCPs at gas phase and size segregated particle phase during dust incursion from the Saharan Desert in the Northwestern Anatolian Peninsula [J]. Advances in Meteorology, 2016: 1-12. [49] FRANCISCO A P, NARDOCCI A C, TOMINAGA M Y, et al. Spatial and seasonal trends of polychlorinated dioxins, furans and dioxin-like polychlorinated biphenyls in air using passive and active samplers and inhalation risk assessment [J]. Atmospheric Pollution Research, 2017, 8(5): 979-987. doi: 10.1016/j.apr.2017.03.007 [50] 张玉兰, 康世昌. 利用多波段热光碳分析仪解析碳质气溶胶特征: 以兰州市为例 [J]. 中国科学:地球科学, 2018, 48(10): 1363-1376. ZHANG Y, KANG S. 2018. Characteristics of carbonaceous aerosols analyzed using a multiwavelength thermal/optical carbon analyzer: A case study in Lanzhou city [J]. Science China Earth Sciences, 2018, 48(10): 1363-1376(in Chinese).
[51] JIAO L, LAO Q, CHEN L, et al. Concentration and influence factors of organochlorine pesticides in atmospheric particles in a coastal island in Fujian, southeast China [J]. Aerosol and Air Quality Research, 2018, 18(12): 2982-2996. doi: 10.4209/aaqr.2018.04.0126 [52] 夏丹, 高丽荣, 郑明辉. 全二维气相色谱分析持久性有机污染物的应用进展 [J]. 色谱, 2017, 35(1): 91-98. doi: 10.3724/SP.J.1123.2016.08029 XIA D, GAO L R, ZHENG M H. Recent developments in comprehensive two-dimensional gas chromatography for analysis of persistent organic pollutants [J]. Chinese Journal of Chromatography, 2017, 35(1): 91-98(in Chinese). doi: 10.3724/SP.J.1123.2016.08029
[53] XU T, LV Y, CHENG T, et al. Using comprehensive GC × GC to study PAHs and n-alkanes associated with PM2.5 in urban atmosphere [J]. Environmental Science and Pollution Research, 2015, 22(7): 5253-5262. doi: 10.1007/s11356-014-3695-9 [54] FENG B, LI L, XU H, et al. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment [J]. Journal of Environmental Sciences, 2019, 77: 11-19. doi: 10.1016/j.jes.2017.12.025 [55] WANG Y, ZHU X, GAO Y, et al. Monitoring gas- and particulate-phase short-chain polychlorinated paraffins in the urban air of Dalian by a self-developed passive sampler [J]. Journal of Environmental Sciences, 2019, 80: 287-295. doi: 10.1016/j.jes.2019.01.007 [56] 卞锐, 徐春晓, 于萍, 等. 气相色谱–串联质谱技术在环境监测中的应用进展 [J]. 化学分析计量, 2019, 28(6): 130-133. doi: 10.3969/j.issn.1008-6145.2019.06.030 BIAN R, XU C X, YU P, et al. Application and advance of gas chromatography–tandem mass spectrometry in environmental monitoring [J]. Chemical Analysis and Meterage, 2019, 28(6): 130-133(in Chinese). doi: 10.3969/j.issn.1008-6145.2019.06.030
[57] FRANCISCO A P, HARNER T, ENG A. Measurement of polyurethane foam - air partition coefficients for semivolatile organic compounds as a function of temperature: Application to passive air sampler monitoring [J]. Chemosphere, 2017, 174: 638-642. doi: 10.1016/j.chemosphere.2017.01.135 [58] 史俊文, 朱小红, 汪庆庆, 等. 控温超声提取-高效液相色谱法测定空气PM2.5中16种多环芳烃 [J]. 理化检验(化学分册), 2019, 55(2): 136-140. SHI J W, ZHU X H, WANG Q Q, et al. HPLC determination of 16 polycyclic aromatic hydrocarbons in atmospheric PM2.5 with ultrasonic extraction of temperature control [J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(2): 136-140(in Chinese).
[59] 赵文生, 范宁伟, 翦英红. 索氏提取-高效液相色谱法测定大气颗粒物中的十溴联苯醚 [J]. 信阳师范学院学报(自然科学版), 2015, 28(2): 222-225. ZHAO W S, FAN N W, JIAN Y H. Determination of decabrominated diphenyl ether in gas particle samples using soxhlet extract method followed by high performance liquid chromatography [J]. Journal of Xinyang Normal University Natural Science Edition, 2015, 28(2): 222-225(in Chinese).
[60] FUJIWARA F, GUIñEZ M, CERUTTI S, et al. UHPLC-(+)APCI-MS/MS determination of oxygenated and nitrated polycyclic aromatic hydrocarbons in airborne particulate matter and tree barks collected in Buenos Aires city [J]. Microchemical Journal, 2014, 116: 118-124. [61] JIANG B, LIANG Y, XU C, et al. Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance [J]. Environmental Science, 2014, 48(9): 4716-4723. [62] KUANG B Y, YEUNG H S, LEE C C, et al. Aromatic formulas in ambient PM2.5 samples from Hong Kong determined using FT-ICR ultrahigh-resolution mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2018, 410(24): 6289-6304. doi: 10.1007/s00216-018-1239-8 [63] NING C, GAO Y, ZHANG H, et al. Molecular characterization of dissolved organic matters in winter atmospheric fine particulate matters (PM2.5) from a coastal city of northeast China [J]. Science of the Total Environment, 2019, 689: 312-321. doi: 10.1016/j.scitotenv.2019.06.418 [64] AN Y, XU J, FENG L, et al. Molecular characterization of organic aerosol in the Himalayas: Insight from ultra-high-resolution mass spectrometry [J]. Atmospheric Chemistry and Physics, 2019, 19(2): 1115-1128. doi: 10.5194/acp-19-1115-2019 [65] WU C, YANG J, FU Q, et al. Molecular characterization of water-soluble organic compounds in PM2.5 using ultrahigh resolution mass spectrometry [J]. Science of the Total Environment, 2019, 668: 917-924. doi: 10.1016/j.scitotenv.2019.03.031 [66] LYU R, SHI Z, ALAM M S, et al. Insight into the composition of organic compounds ( ≥  C6) in PM2.5 in wintertime in Beijing, China [J]. Atmospheric Chemistry and Physics, 2019, 19(16): 10865-10881. doi: 10.5194/acp-19-10865-2019 [67] BOGDAL C, ALSBERG T, DIEFENBACHER P S, et al. Fast quantification of chlorinated paraffins in environmental samples by direct injection high-resolution mass spectrometry with pattern deconvolution [J]. Analytical Chemistry, 2015, 87(5): 2852-2860. doi: 10.1021/ac504444d [68] WU Y, GAO S, LIU Z, et al. The quantification of chlorinated paraffins in environmental samples by ultra-high-performance liquid chromatography coupled with Orbitrap Fusion Tribrid mass spectrometry [J]. Journal of Chromatography A, 2019, 1593: 102-109. doi: 10.1016/j.chroma.2019.01.077 [69] WANG X, HAYECK N, BRUEGGEMANN M, et al. Chemical characteristics of organic aerosols in Shanghai: A study by ultrahigh-performance liquid chromatography coupled with Orbitrap mass spectrometry [J]. Journal of Geophysical Research-Atmospheres, 2017, 122(21): 11703-11722. doi: 10.1002/2017JD026930 [70] 白慧玲. 环境空气颗粒物中烃类物质的稳定碳、氢同位素组成研究 [D]. 太原: 太原理工大学, 2014. BAI H L. The stable carbon and hydrocarbon isotope compositions of hydrocarbons associated with atmospheric particulates [D]. Taiyuan: Taiyuan University of Technology, 2014 (in Chinese).
[71] SHEN R, LIU Z, CHEN X, et al. Atmospheric levels, variations, sources and health risk of PM2.5-bound polycyclic aromatic hydrocarbons during winter over the North China Plain [J]. Science of the Total Environment, 2019, 655: 581-590. doi: 10.1016/j.scitotenv.2018.11.220 [72] ZHOU S, YANG L, GAO R, et al. A comparison study of carbonaceous aerosols in a typical North China Plain urban atmosphere: Seasonal variability, sources and implications to haze formation [J]. Atmospheric Environment, 2017, 149: 95-103. doi: 10.1016/j.atmosenv.2016.11.009 [73] LIANG Z, ZHAO X, CHEN J, et al. Seasonal characteristics of chemical compositions and sources identification of PM2.5 in Zhuhai, China [J]. Environmental Geochemistry and Health, 2019, 41(2): 715-728. doi: 10.1007/s10653-018-0164-2 [74] 张晓岭, 卢益, 朱明吉, 等. 重庆市大气二噁英污染水平及季节变化 [J]. 环境科学, 2014, 35(1): 22-29. ZHANG X L, LU Y, ZHU M J, et al. Concentrations of PCDD/Fs in the atmosphere of Chongqing city and its seasonal variation [J]. Environmental Science, 2014, 35(1): 22-29(in Chinese).
[75] LI H, LI J, LI H, et al. Seasonal variations and inhalation risk assessment of short-chain chlorinated paraffins in PM2.5 of Jinan, China [J]. Environmental pollution, 2019, 245: 325-330. doi: 10.1016/j.envpol.2018.10.133 [76] ZHU X, BAI H, GAO Y, et al. Concentrations and inhalation risk assessment of short-chain polychlorinated paraffins in the urban air of Dalian, China [J]. Environmental Science and Pollution Research, 2017, 24(26): 21203-21212. doi: 10.1007/s11356-017-9775-x [77] JI D, ZHANG J, HE J, et al. Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China [J]. Atmospheric Environment, 2016, 125: 293-306. doi: 10.1016/j.atmosenv.2015.11.020 [78] QI M, JIANG L, LIU Y, et al. Analysis of the characteristics and sources of carbonaceous aerosols in PM2.5 in the Beijing, Tianjin, and Langfang region, China [J]. International Journal of Environmental Research and Public Health, 2018, 15(7): 1483-1497. doi: 10.3390/ijerph15071483 [79] CAO J J, SHEN Z X, CHOW J C, et al. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities [J]. Journal of the Air & Waste Management Association, 2012, 62(10): 1214-1226. [80] GUO Z G, SHENG L F, FENG J L, et al. Seasonal variation of solvent extractable organic compounds in the aerosols in Qingdao, China [J]. Atmospheric Environment, 2003, 37(13): 1825-1834. doi: 10.1016/S1352-2310(03)00064-5 [81] 吴瑕, 曹芳, 翟晓瑶, 等. 长春秋季细颗粒物中有机气溶胶组成特征及来源 [J]. 环境科学, 2019, 40(8): 3438-3446. WU X, CAO F, ZHAI X Y, et al. Molecular composition and source apportionment of fine organic aerosols in autumn of Changchun [J]. Environmental Science, 2019, 40(8): 3438-3446(in Chinese).
[82] XING J, TANG H, LEE W J, et al. Part Ⅱ: PM2.5 and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the ambient air of northern China [J]. Aerosol and Air Quality Research, 2017, 17(8): 2010-2026. doi: 10.4209/aaqr.2017.06.0211 [83] WANG C, LI W, CHEN J, et al. Summer atmospheric polybrominated diphenyl ethers in urban and rural areas of northern China [J]. Environmental Pollution, 2012, 171: 234-240. doi: 10.1016/j.envpol.2012.07.041 [84] HUANG H, GAO L, XIA D, et al. Characterization of short- and medium-chain chlorinated paraffins in outdoor/indoor PM10/PM2.5/PM1.0 in Beijing, China [J]. Environmental pollution, 2017, 225: 674-680. doi: 10.1016/j.envpol.2017.03.054 [85] WANG P, ZHAO N, CUI Y, et al. Short-chain chlorinated paraffin (SCCP) pollution from a CP production plant in China: Dispersion, congener patterns and health risk assessment [J]. Chemosphere, 2018, 211: 456-464. doi: 10.1016/j.chemosphere.2018.07.136 [86] PENG X L, HAO Q J, WEN T X, et al. Characteristics of organic carbon and elemental carbon in atmospheric aerosols in the urban area in Beibei, a suburb of Chongqing [J]. Aerosol and Air Quality Research, 2018, 18(11): 2764-2774. doi: 10.4209/aaqr.2017.11.0450 [87] YANG W, XIE S, ZHANG Z, et al. Characteristics and sources of carbonaceous aerosol across urban and rural sites in a rapidly urbanized but low-level industrialized city in the Sichuan Basin, China [J]. Environmental Science and Pollution Research, 2019, 26(26): 26646-26663. doi: 10.1007/s11356-019-05242-7 [88] WANG J, HO S S H, CAO J, et al. Characteristics and major sources of carbonaceous aerosols in PM2.5 from Sanya, China [J]. Science of the Total Environment, 2015, 530-531: 110-119. doi: 10.1016/j.scitotenv.2015.05.005 [89] LI X, KONG S, YIN Y, et al. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 around 2013 Asian Youth Games period in Nanjing [J]. Atmospheric Research, 2016, 174-175: 85-96. doi: 10.1016/j.atmosres.2016.01.010 [90] 梁秀梅, 邹云锋, 王钰钰, 等. 广州市大气PM2.5中多环芳烃的季节变化特征及健康风险评价 [J]. 环境与健康杂志, 2017, 34(3): 220-224. LIANG X M, ZOU Y F, WANG Y Y, et al. Seasonal variation and health risk assessment of polycyclic aromatic hydrocarbons in atmospheric PM2.5 in Guangzhou [J]. Journal of Environment and Health, 2017, 34(3): 220-224(in Chinese).
[91] 刘立, 胡辉, 李娴, 等. 东莞市大气PM10、PM2.5、PM1中多环芳烃/正构烷烃的污染特征和来源解析 [J]. 环境工程学报, 2017, 11(9): 5138-5151. doi: 10.12030/j.cjee.201609242 LIU L, HU H, LI X, et al. Pollution characteristics and source apportionment of PAHs and n-alkane in PM10, PM2.5 and PM1 in Dongguan city, China [J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5138-5151(in Chinese). doi: 10.12030/j.cjee.201609242
[92] TANG H, CUI K, XING J, et al. Part I: PM2.5 and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the ambient air of southern China [J]. Aerosol and Air Quality Research, 2017, 17(6): 1550-1569. doi: 10.4209/aaqr.2017.03.0117 [93] WEN S, GONG Y, LI J, et al. Particle-bound PCDD/Fs in the atmosphere of an electronic waste dismantling area in China [J]. Biomedical Environmental Science, 2011, 24(2): 102-111. [94] 林海涛, 李琦路, 张干, 等. 中国8个城市大气多溴联苯醚的污染特征及人体暴露水平 [J]. 环境科学, 2016, 37(1): 10-15. LIN H T, LI Q L, ZHANG G, et al. Atmospheric polybrominated diphenyl ethers in eight cities of China: Pollution characteristics and human exposure [J]. Environmental Science, 2016, 37(1): 10-15(in Chinese).
[95] GUO T, LIN T, LI Y, et al. Occurrence, gas-particle partitioning, and sources of polybrominated diphenyl ethers in the atmosphere over the Yangtze River Estuary, East China Sea [J]. Science of the Total Environment, 2019, 693: 133538-133549. doi: 10.1016/j.scitotenv.2019.07.344 [96] PENG J, WU D, JIANG Y, et al. Spatiotemporal variability of polybrominated diphenyl ether concentration in atmospheric fine particles in Shenzhen, China [J]. Environmental Pollution, 2018, 238: 749-759. doi: 10.1016/j.envpol.2018.03.076 [97] SU P H, TOMY G T, HOU C Y, et al. Gas/particle partitioning, particle-size distribution of atmospheric polybrominated diphenyl ethers in southeast Shanghai rural area and size-resolved predicting model [J]. Chemosphere, 2018, 197: 251-261. doi: 10.1016/j.chemosphere.2018.01.005 [98] ZHUO M, MA S, LI G, et al. Chlorinated paraffins in the indoor and outdoor atmospheric particles from the Pearl River Delta: Characteristics, sources, and human exposure risks [J]. Science of the Total Environment, 2019, 650(Pt 1): 1041-1049. [99] WEI X Y, LIU M, YANG J, et al. Characterization of PM2.5-bound PAHs and carbonaceous aerosols during three-month severe haze episode in Shanghai, China: Chemical composition, source apportionment and long-range transportation [J]. Atmospheric Environment, 2019, 203: 1-9. doi: 10.1016/j.atmosenv.2019.01.046 [100] ZHANG N, CAO J, LI L, et al. Characteristics and source identification of polycyclic aromatic hydrocarbons and n-alkanes in PM2.5 in Xiamen [J]. Aerosol and Air Quality Research, 2018, 18(7): 1673-1683. doi: 10.4209/aaqr.2017.11.0493 [101] 王磊, 周家斌, 苑金鹏, 等. 武汉大气PM2.5中烃类有机物污染特征及来源辨析 [J]. 武汉理工大学学报, 2013, 35(12): 140-145. doi: 10.3963/j.issn.1671-4431.2013.12.027 WANG L, ZHOU J B, YUAN J P, et al. Distribution and source identification of hydrocarbons in atmospheric PM2.5 in Wuhan [J]. Journal of Wuhan University of Technology, 2013, 35(12): 140-145(in Chinese). doi: 10.3963/j.issn.1671-4431.2013.12.027
[102] 葛红波, 郭丽, 李爱民, 等. 武汉市大气中多溴联苯醚的分布特征研究 [J]. 环境科学与技术, 2018, 41(2): 77-82. GE H B, GUO L, LI A M, et al. Study of the level and distribution of polybrominated diphenyl ethers (PBDEs) in the atmosphere of Wuhan [J]. Environmental Science & Technology, 2018, 41(2): 77-82(in Chinese).
[103] WANG L, ZHAO Y, YI X, et al. Spatial distribution of atmospheric PAHs and their genotoxicity in petrochemical industrialized Lanzhou valley, northwest China [J]. Environmental Science and Pollution Research, 2017, 24(14): 12820-12834. doi: 10.1007/s11356-017-8808-9 [104] XU H, HO S S H, GAO M, et al. Microscale spatial distribution and health assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) at nine communities in Xi'an, China [J]. Environmental Pollution, 2016, 218: 1065-1073. doi: 10.1016/j.envpol.2016.08.058 [105] TURAP Y, DING X, TALIFU D, et al. Concentration characteristics, source apportionment, and oxidative damage of PM2.5-bound PAHs in petrochemical region in Xinjiang, NW China. pdf [J]. Environmental Science and Pollution Research, 2018, 25: 22629-22640. doi: 10.1007/s11356-018-2082-3 [106] YE L, ZHANG C, HAN D, et al. Characterization and Source Identification of Polybrominated Diphenyl Ethers (PBDEs) in Air in Xi'an: Based on a Five-Year Study [J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 520-536. doi: 10.3390/ijerph16030520 [107] LI C, CHEN P, KANG S, et al. Concentrations and light absorption characteristics of carbonaceous aerosol in PM2.5 and PM10 of Lhasa city, the Tibetan Plateau [J]. Atmospheric Environment, 2016, 127: 340-346. doi: 10.1016/j.atmosenv.2015.12.059 [108] WANG C, WANG X, GONG P, et al. Long-term trends of atmospheric organochlorine pollutants and polycyclic aromatic hydrocarbons over the southeastern Tibetan Plateau [J]. Science of the Total Environment, 2018, 624: 241-249. doi: 10.1016/j.scitotenv.2017.12.140 [109] SHEN R, WANG Y, GAO W, et al. Size-segregated particulate matter bound polycyclic aromatic hydrocarbons (PAHs) over China: Size distribution, characteristics and health risk assessment [J]. Science of the Total Environment, 2019, 685: 116-123. doi: 10.1016/j.scitotenv.2019.05.436 [110] 孙俊玲, 王鹏焱, 李英明, 等. 北京市冬季大气PM10中二噁英的污染水平与分布特征 [J]. 环境化学, 2019, 38(4): 713-720. doi: 10.7524/j.issn.0254-6108.2018052103 SUN J L, WANG P Y, LI Y M, et al. Pollution levels and spatial distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the atmospheric PM10 of Beijing in winter [J]. Environmental Chemistry, 2019, 38(4): 713-720(in Chinese). doi: 10.7524/j.issn.0254-6108.2018052103
[111] 孙俊玲, 张庆华, 李英明. 北京市冬季大气细颗粒物中二噁英的污染特征 [J]. 环境化学, 2019, 38(9): 1982-1989. doi: 10.7524/j.issn.0254-6108.2018121903 SUN J L, ZHANG Q H, LI Y M. Profiles of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in atmospheric fine particulate matter of Beijing in winter [J]. Environmental Chemistry, 2019, 38(9): 1982-1989(in Chinese). doi: 10.7524/j.issn.0254-6108.2018121903
[112] BESIS A, BOTSAROPOULOU E, VOUTSA D, et al. Particle-size distribution of polybrominated diphenyl ethers (PBDEs) in the urban agglomeration of Thessaloniki, northern Greece [J]. Atmospheric Environment, 2015, 104: 176-185. doi: 10.1016/j.atmosenv.2015.01.019 [113] CAO R, ZHANG H, GENG N, et al. Diurnal variations of atmospheric polycyclic aromatic hydrocarbons (PAHs) during three sequent winter haze episodes in Beijing, China [J]. Science of the Total Environment, 2018, 625: 1486-1493. doi: 10.1016/j.scitotenv.2017.12.335 [114] HUNG N T, TING H W, CHI K H. Evaluation of the relative health risk impact of atmospheric PCDD/Fs in PM2.5 in Taiwan [J]. Aerosol and Air Quality Research, 2018, 18(10): 2591-2599. doi: 10.4209/aaqr.2018.03.0094 [115] 蒋君丽, 张承中, 马万里, 等. 西安城区秋季大气中多溴联苯醚的污染特征及来源分析 [J]. 环境科学, 2011, 32(8): 2226-2230. JIANG J L, ZHNAG C Z, MA W L, et al. Pollution characteristics and source apportionment of polybrominated diphenyl ethers in autumn air of Xi′an [J]. Environmental Science, 2011, 32(8): 2226-2230(in Chinese).
[116] WANG T, HAN S, YUAN B, et al. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting [J]. Environmental Pollution, 2012, 171: 38-45. doi: 10.1016/j.envpol.2012.07.025