大气颗粒物中典型有机物的分析方法和污染特征研究进展

阿米拉, 耿柠波, 曹蓉, 张海军, 朱秀华, 陈吉平. 大气颗粒物中典型有机物的分析方法和污染特征研究进展[J]. 环境化学, 2021, 40(12): 3774-3786. doi: 10.7524/j.issn.0254-6108.2020081204
引用本文: 阿米拉, 耿柠波, 曹蓉, 张海军, 朱秀华, 陈吉平. 大气颗粒物中典型有机物的分析方法和污染特征研究进展[J]. 环境化学, 2021, 40(12): 3774-3786. doi: 10.7524/j.issn.0254-6108.2020081204
A Mila, GENG Ningbo, CAO Rong, ZHANG Haijun, ZHU Xiuhua, CHEN Jiping. Research progress of analytical methods and pollution characteristics of typical organic pollutant in atmospheric particulate matter[J]. Environmental Chemistry, 2021, 40(12): 3774-3786. doi: 10.7524/j.issn.0254-6108.2020081204
Citation: A Mila, GENG Ningbo, CAO Rong, ZHANG Haijun, ZHU Xiuhua, CHEN Jiping. Research progress of analytical methods and pollution characteristics of typical organic pollutant in atmospheric particulate matter[J]. Environmental Chemistry, 2021, 40(12): 3774-3786. doi: 10.7524/j.issn.0254-6108.2020081204

大气颗粒物中典型有机物的分析方法和污染特征研究进展

    通讯作者: Tel:0411-84109335, E-mail:dlzhuxiuhua@sina.com
  • 基金项目:
    国家自然科学基金(21607152,21577009,91643104,21906158)资助.

Research progress of analytical methods and pollution characteristics of typical organic pollutant in atmospheric particulate matter

    Corresponding author: ZHU Xiuhua, dlzhuxiuhua@sina.com
  • Fund Project: the National Natural Science Foundation of China (21607152,21577009,91643104,21906158).
  • 摘要: 有机污染物是大气颗粒物的重要组成部分,约占颗粒物质量的20%—50%。颗粒物中的有机污染物具有高毒性,长期暴露能够给人群带来潜在的健康风险;有机污染物参与气溶胶成核,影响空气质量和能见度,进而改变区域气候,其引起的健康与环境效应已成为民众关注的焦点。大气颗粒物中有机污染物的分析技术是准确判断其来源和污染特征的重要一环。本文对颗粒物中常见有机污染物的分析技术、污染特征及主要来源进行了综述。系统介绍了有机污染物的样品采样、提取净化和分离分析技术,对比了不同分析方法的优势,总结了我国大气颗粒物中有机污染物的时空分布和气粒分配特征,并探讨了引起相关差异的原因,为后续深入认识大气颗粒物中有机污染物的分布特征提供参考。最后,对大气颗粒物中有机物的分析技术和发展方向进行了总结与展望。
  • 加载中
  • 表 1  不同溶剂提取方法比较

    Table 1.  Comparison of different solvent extraction methods

    方法
    Method
    原理
    Principle
    常用试剂
    Common reagents
    特点
    Characteristic
    索氏提取法[26]利用有机溶剂萃取原理达到目标物与其他组分高效分离二氯甲烷、乙腈、苯、环己烷等EPA规定的标准提取方法,萃取效率高,但耗时、耗溶剂、操作比较麻烦
    加速溶剂萃取法[27]提高温度和压力的条件用有机溶剂萃取的自动化方法二氯甲烷,乙腈,环己烷,乙醇,丙酮等溶剂用量少,快速,效率高,被EPA选定为推荐的标准方法
    超声波提取法[28]利用超声波技术达到混合物分离二氯甲烷,乙腈, 环己烷,乙醇, 丙酮等溶剂用量少、提取效率高
    微波提取法[29-30]以微波技术达到混合物分离二氯甲烷,乙腈,环己烷,乙醇等快速、高效,易于控制,可保持分析对象的原本化合物状态
    超临界流体萃取法[31]利用超临界流体渗透到固体内部使被测组分溶解CO2超临界流体、水溶剂消耗量少、回收率高、易于控制
    方法
    Method
    原理
    Principle
    常用试剂
    Common reagents
    特点
    Characteristic
    索氏提取法[26]利用有机溶剂萃取原理达到目标物与其他组分高效分离二氯甲烷、乙腈、苯、环己烷等EPA规定的标准提取方法,萃取效率高,但耗时、耗溶剂、操作比较麻烦
    加速溶剂萃取法[27]提高温度和压力的条件用有机溶剂萃取的自动化方法二氯甲烷,乙腈,环己烷,乙醇,丙酮等溶剂用量少,快速,效率高,被EPA选定为推荐的标准方法
    超声波提取法[28]利用超声波技术达到混合物分离二氯甲烷,乙腈, 环己烷,乙醇, 丙酮等溶剂用量少、提取效率高
    微波提取法[29-30]以微波技术达到混合物分离二氯甲烷,乙腈,环己烷,乙醇等快速、高效,易于控制,可保持分析对象的原本化合物状态
    超临界流体萃取法[31]利用超临界流体渗透到固体内部使被测组分溶解CO2超临界流体、水溶剂消耗量少、回收率高、易于控制
    下载: 导出CSV

    表 2  我国大气颗粒物中有机污染物特征

    Table 2.  Characteristics of organic pollutants in atmospheric particulates in China

    城市CityOC/(μg·m−3)PAHs/(ng·m−3)PCDD/Fs/(fg-WHO2005−TEQ·m−3)PBDEs/(pg·m−3)SCCPs/(ng·m−3)
    北方地区北京:(14.0±11.7)[77]
    天津:(25.27±12.43) [78]
    济南:(34.35±18.76) [72]
    长春:(40.4±7.04)[79]
    北京:87.6[54]
    青岛:86.5[80]
    天津:156.09[71]
    石家庄:494.72[71]
    长春:80.4[81]
    北京:150.9 pg·m−3[44]
    天津:62[82]
    哈尔滨:43[82]
    沈阳:54[82]
    石家庄:119[82]
    济南:84[82]
    北京:150.8 [44]
    大连:59.5[83]
    德州:139.7[83]
    烟台:49.8[83]
    北京:14.9[84]
    济南:38.7[75]
    淄博:142.7[85]
    南方重庆:(16.3±7.6)[86]
    南充:(10.1±7.8)[87]
    广州:(24.2±22.1)[79]
    三亚:(3.4±1.8)[88]
    南京:8.35[89]
    广州:8.33[90]
    东莞:69.7[91]
    三亚:9.9[88]
    南京:49.7[92]
    杭州:46[92]
    广州:33.2[92]
    台州:223.3[93]
    绵阳:9.78[94]
    长三角:14[95]
    深圳:33.47[96]
    上海:86.4[97]
    佛山:14.8[98]
    肇庆:11.3[98]
    广州:12.5[98]
    东部沿海青岛:(26.3±10.3)[79]
    上海:(12.0±5.8)[99]
    厦门:(15.5±5.7)[79]
    厦门:10.69[100]
    上海:12.3[99]
    三亚:16.6[92]
    深圳:26.9[92]
    上海:2.3[17]
    青岛:3.36[94]
    厦门:2.09[94]
    广州:175[94]
    大连:1.84[76]
    深圳:30.4[98]
    东部内陆武汉:(33.8±15.8)[79]
    北京:(23.9±12.4)[79]
    武汉:63.9[101]武汉:53.5[92]
    长沙:45.7[92]
    武汉:13.1[102]
    南昌:3.39[94]
    西部西安:(95.8±27.2)[79]兰州:201[103]
    西安:57.1[104]
    新疆:60.33[105]
    呼和浩特:54[82]
    兰州:76[82]
    贵阳:38.6[92]
    西安:15.8[106]
    银川:76[83]
    武威:40.5[83]
    昆明:2.75 [94]
    偏远拉萨:3.27 [107]鲁朗:6.2[108]拉萨:46 [82]
    城市CityOC/(μg·m−3)PAHs/(ng·m−3)PCDD/Fs/(fg-WHO2005−TEQ·m−3)PBDEs/(pg·m−3)SCCPs/(ng·m−3)
    北方地区北京:(14.0±11.7)[77]
    天津:(25.27±12.43) [78]
    济南:(34.35±18.76) [72]
    长春:(40.4±7.04)[79]
    北京:87.6[54]
    青岛:86.5[80]
    天津:156.09[71]
    石家庄:494.72[71]
    长春:80.4[81]
    北京:150.9 pg·m−3[44]
    天津:62[82]
    哈尔滨:43[82]
    沈阳:54[82]
    石家庄:119[82]
    济南:84[82]
    北京:150.8 [44]
    大连:59.5[83]
    德州:139.7[83]
    烟台:49.8[83]
    北京:14.9[84]
    济南:38.7[75]
    淄博:142.7[85]
    南方重庆:(16.3±7.6)[86]
    南充:(10.1±7.8)[87]
    广州:(24.2±22.1)[79]
    三亚:(3.4±1.8)[88]
    南京:8.35[89]
    广州:8.33[90]
    东莞:69.7[91]
    三亚:9.9[88]
    南京:49.7[92]
    杭州:46[92]
    广州:33.2[92]
    台州:223.3[93]
    绵阳:9.78[94]
    长三角:14[95]
    深圳:33.47[96]
    上海:86.4[97]
    佛山:14.8[98]
    肇庆:11.3[98]
    广州:12.5[98]
    东部沿海青岛:(26.3±10.3)[79]
    上海:(12.0±5.8)[99]
    厦门:(15.5±5.7)[79]
    厦门:10.69[100]
    上海:12.3[99]
    三亚:16.6[92]
    深圳:26.9[92]
    上海:2.3[17]
    青岛:3.36[94]
    厦门:2.09[94]
    广州:175[94]
    大连:1.84[76]
    深圳:30.4[98]
    东部内陆武汉:(33.8±15.8)[79]
    北京:(23.9±12.4)[79]
    武汉:63.9[101]武汉:53.5[92]
    长沙:45.7[92]
    武汉:13.1[102]
    南昌:3.39[94]
    西部西安:(95.8±27.2)[79]兰州:201[103]
    西安:57.1[104]
    新疆:60.33[105]
    呼和浩特:54[82]
    兰州:76[82]
    贵阳:38.6[92]
    西安:15.8[106]
    银川:76[83]
    武威:40.5[83]
    昆明:2.75 [94]
    偏远拉萨:3.27 [107]鲁朗:6.2[108]拉萨:46 [82]
    下载: 导出CSV
  • [1] HUANG D, HUA X, XIU G L, et al. Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter [J]. Analytica Chimica Acta, 2017, 989: 1-14. doi: 10.1016/j.aca.2017.07.042
    [2] JIMENEZ O P, PASTOR R M, ALONSO S G. Assessment uncertainty associated to the analysis of organic compounds linked to particulate matter of atmospheric aerosols [J]. Talanta, 2010, 80(3): 1121-1128. doi: 10.1016/j.talanta.2009.08.036
    [3] FIORE A M, NAIK V, LEIBENSPERGER E M. Air quality and climate connections [J]. Journal of the Air & Waste Management Association, 2015, 65(6): 645-685.
    [4] POSCHL U. Atmospheric aerosols: Composition, transformation, climate and health effects [J]. Angewande Chemie International Edition, 2005, 44(46): 7520-7540. doi: 10.1002/anie.200501122
    [5] KIM K H, KABIR E, KABIR S. A review on the human health impact of airborne particulate matter [J]. Environment International, 2015, 74: 136-143. doi: 10.1016/j.envint.2014.10.005
    [6] 李杏茹, 白羽, 陈曦, 等. 北京冬季重污染过程大气细颗粒物化学组成特征及来源分析 [J]. 环境化学, 2018, 37(11): 2397-2409. doi: 10.7524/j.issn.0254-6108.2018011401

    LI X R, BAI Y, CHEN X, et al. Chemical composition and source apportionment of PM2.5 during winter in Beijing [J]. Environmental Chemistry, 2018, 37(11): 2397-2409(in Chinese). doi: 10.7524/j.issn.0254-6108.2018011401

    [7] TURPIN B J, ANDREWS E S P. Measuring and simulating particulate organics in the atmosphere: Problems and prospects [J]. Atmospheric Environment, 2000, 34(18): 2983-3013. doi: 10.1016/S1352-2310(99)00501-4
    [8] FU X, WANG X, HU Q, et al. Changes in visibility with PM2.5 composition and relative humidity at a background site in the Pearl River Delta region [J]. Journal of Environmental Sciences, 2016, 40: 10-19. doi: 10.1016/j.jes.2015.12.001
    [9] 张婷婷, 马文林, 亓学奎, 等. 北京城区PM2.5有机碳和元素碳的污染特征及来源分析 [J]. 环境化学, 2018, 37(12): 2758-2766.ZHANG T T, MA W L, QI X K, et al. Characteristics and sources of organic carbon and element carbon in PM2.5 in the urban areas of Beijing [J]. Environmental Chemistry, 2018, 37(12): 2758-2766 (in Chinese).
    [10] SAARIKOSKI S, TIMONEN H, SAARNIO K, et al. Sources of organic carbon in fine particulate matter in northern European urban air [J]. Atmospheric Chemistry and Physics, 2008, 8(20): 6281-6295. doi: 10.5194/acp-8-6281-2008
    [11] ASWINI A R, HEGDE P, NAIR P R. Carbonaceous and inorganic aerosols over a sub-urban site in peninsular India: Temporal variability and source characteristics [J]. Atmospheric Research, 2018, 199: 40-53. doi: 10.1016/j.atmosres.2017.09.005
    [12] SATSANGI A, PACHAURI T, SINGLA V, et al. Organic and elemental carbon aerosols at a suburban site [J]. Atmospheric Research, 2012, 113: 13-21. doi: 10.1016/j.atmosres.2012.04.012
    [13] ZHENG M, CASS G R, SCHAUER J, et al. Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers [J]. Environmental Science & Technology, 2002, 36(11): 2361-2371.
    [14] 董雪玲, 袁杨森. 大气可吸入颗粒物中有机污染物的研究进展 [J]. 资源与产业, 2006, 8(6): 87-90. doi: 10.3969/j.issn.1673-2464.2006.06.025

    DONG X L, YUAN Y S. study progress on organic pollution in inhalable particles in atmosphere [J]. Resource & Industries, 2006, 8(6): 87-90(in Chinese). doi: 10.3969/j.issn.1673-2464.2006.06.025

    [15] GIORIO C, TAPPARO A, DALL'OSTO M, et al. Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra [J]. Environmental Science & Technology, 2015, 49(6): 3330-3340.
    [16] 祁士华, 邢新丽, 李军, 等. 大气中持久性有机污染物(POPs)研究进展 [J]. 海峡科学, 2013(8): 29-32. doi: 10.3969/j.issn.1673-8683.2013.08.008

    QI S H, XING X L, LI J, et al. Advances in research on persistent organic pollutants (POPs) in the atmosphere [J]. Straits Science, 2013(8): 29-32(in Chinese). doi: 10.3969/j.issn.1673-8683.2013.08.008

    [17] DIE Q, NIE Z, LIU F, et al. Seasonal variations in atmospheric concentrations and gas–particle partitioning of PCDD/Fs and dioxin-like PCBs around industrial sites in Shanghai, China [J]. Atmospheric Environment, 2015, 119: 220-227. doi: 10.1016/j.atmosenv.2015.08.022
    [18] YANG G, GUO X, JI H, et al. Potential threat of heavy metals and PAHs in PM2.5 in different urban functional areas of Beijing [J]. Atmospheric Research, 2016, 178: 6-16.
    [19] MASIH J, SINGHVI R, KUMAR K, et al. Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a Semi Arid Tract of Northern India [J]. Aerosol and Air Quality Research, 2012, 12(4): 515-25. doi: 10.4209/aaqr.2011.11.0192
    [20] LI H, FU J, PAN W, et al. Environmental behaviour of short-chain chlorinated paraffins in aquatic and terrestrial ecosystems of Ny-Alesund and London Island, Svalbard, in the Arctic [J]. Science of the Total Environment, 2017, 590-591: 163-70. doi: 10.1016/j.scitotenv.2017.02.192
    [21] GLUGE J, WANG Z, BOGDAL C, et al. Global production, use, and emission volumes of short-chain chlorinated paraffins - A minimum scenario [J]. Science of the Total Environment, 2016, 573: 1132-1146. doi: 10.1016/j.scitotenv.2016.08.105
    [22] JIANG W, CHEN H, HUANG T, et al. Tagged sources of short-chain chlorinated paraffins in China's marine environment and fish [J]. Chemosphere, 2019, 229: 358-365. doi: 10.1016/j.chemosphere.2019.04.144
    [23] 谈静, 刘琼玉, 姜郡亭, 等. 大气颗粒物化学组分分析技术研究进展 [J]. 江汉大学学报(自然科学版), 2014, 42(6): 9-14.

    TAN J, LIU Q Y, JIANG J T, et al. Research progress of chemical composition analysis technology for atmospheric particulates [J]. Journal of Jianghan University (Natural Science Edition), 2014, 42(6): 9-14(in Chinese).

    [24] 朱青青, 刘国瑞, 张宪, 等. 大气中持久性有机污染物的采样技术进展 [J]. 生态毒理学报, 2016, 11(2): 50-60.

    ZHU Q Q, LIU G R, ZHANG X, et al. Progress on the sampling techniques of persistent organic pollutants in atmosphere [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 50-60(in Chinese).

    [25] 焦瑞, 张金生, 李丽华. 大气中细颗粒物(PM2.5)中有机碳的研究进展 [J]. 环境科技, 2013, 26(2): 75-78. doi: 10.3969/j.issn.1674-4829.2013.02.019

    JIAO R, ZHANG J S, LI L H. Research progress on the organic carbon of the fine particulate matter (PM2.5) in the atmosphere [J]. Environmental Science and Technology, 2013, 26(2): 75-78(in Chinese). doi: 10.3969/j.issn.1674-4829.2013.02.019

    [26] YADAV I C, DEVI N L, LI J, et al. Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: Implication on source apportionment and toxicological effect [J]. Science of the Total Environment, 2018, 616-617: 223-235. doi: 10.1016/j.scitotenv.2017.10.313
    [27] CHEN Q, CHEN Y, LUO X S, et al. Seasonal characteristics and health risks of PM2.5-bound organic pollutants in industrial and urban areas of a China megacity [J]. Journal of Environmental Management, 2019, 245: 273-281.
    [28] MA X, WANG Y, GAO W, et al. Air-seawater gas exchange and dry deposition of chlorinated paraffins in a typical Inner Sea (Liaodong Bay), north China [J]. Environmental Science & Technology, 2018, 52(14): 7729-7735.
    [29] DING S, DONG F, WANG B, et al. Polychlorinated biphenyls and organochlorine pesticides in atmospheric particulate matter of northern China: Distribution, sources, and risk assessment [J]. Environmental Science and Pollution Research, 2015, 22(21): 17171-17181. doi: 10.1007/s11356-015-4949-x
    [30] COSCOLLA C, CASTILLO M, PASTOR A, et al. Determination of 40 currently used pesticides in airborne particulate matter (PM10) by microwave-assisted extraction and gas chromatography coupled to triple quadrupole mass spectrometry [J]. Analytica Chimica Acta, 2011, 693(1/2): 72-81.
    [31] TIAN L, YIN S, MA Y, et al. Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves: Morphological characteristics have the greatest impact [J]. Science of the Total Environment, 2019, 652: 1149-1155. doi: 10.1016/j.scitotenv.2018.10.357
    [32] 范茜茜, 史咲頔, 邱兴华, 等. 二级热脱附结合气相色谱-质谱联用分析大气细颗粒物中多环芳烃类污染物 [J]. 环境科学学报, 2018, 38(6): 2304-2311.

    FAN Q Q, SHI X D, QIU X H, et al. Measurement of polycyclic aromatic hydrocarbons (PAHs) in ambient fine particulate matter using thermal desorption coupled with gas chromatography-mass spectrometry [J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2304-2311(in Chinese).

    [33] DO D H, WALGRAEVE C, AMARE A N, et al. Airborne volatile organic compounds in urban and industrial locations in four developing countries [J]. Atmospheric Environment, 2015, 119: 330-338. doi: 10.1016/j.atmosenv.2015.08.065
    [34] FLORES R M, MERTOGLU E. Optimization of a thermal desorption-gas chromatography/mass spectrometry method for characterization of semi-volatile organic compounds in high time resolved PM2.5 [J]. Atmospheric Pollution Research, 2020, 11(3): 619-629. doi: 10.1016/j.apr.2019.12.016
    [35] DROOGE B L V, NIKOLOVA I, BALLESTA P P. Thermal desorption gas chromatography–mass spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from ambient air particulate matter [J]. Journal of Chromatography A, 2009, 1216(18): 4030-4039. doi: 10.1016/j.chroma.2009.02.043
    [36] LI W L, LIU L Y, SONG W W, et al. Five-year trends of selected halogenated flame retardants in the atmosphere of northeast China [J]. Science of the Total Environment, 2016, 539: 286-293. doi: 10.1016/j.scitotenv.2015.09.001
    [37] MARI M, SCHUHMACHER M, FELIUBADALO J, et al. Air concentrations of PCDD/Fs, PCBs and PCNs using active and passive air samplers [J]. Chemosphere, 2008, 70(9): 1637-1643. doi: 10.1016/j.chemosphere.2007.07.076
    [38] WANG W, SIMONICH S, GIRI B, et al. Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, north China [J]. Science of the Total Environment, 2011, 409(15): 2942-2950. doi: 10.1016/j.scitotenv.2011.04.021
    [39] 林星辰, 余彬彬, 叶丹霞. 固相萃取技术新发展及其在环境分析中的应用 [J]. 化工时刊, 2014, 28(9): 28-34. doi: 10.3969/j.issn.1002-154X.2014.09.009

    LIN X C, YU B B, YE D X. New development of solid phase extraction and application in environmental analysis [J]. Chemical Industry Times, 2014, 28(9): 28-34(in Chinese). doi: 10.3969/j.issn.1002-154X.2014.09.009

    [40] 李申杰, 杨炳建, 陈荣枫, 等. 固相萃取-高分辨气相色谱/质谱联用法同时检测大气中39种持久性有机污染物 [J]. 分析试验室, 2016, 35(6): 717-721.

    LI S J, YANG B J, CHEN R F, et al. Simultaneous determination of 39 persistent organic pollutants in atmospheric samples by SPE HRGC/HRMS [J]. Chinese Journal of Analysis Laboratory, 2016, 35(6): 717-721(in Chinese).

    [41] 孙海红, 钱叶苗, 宋相丽, 等. 固相萃取技术的应用与研究新进展 [J]. 现代化工, 2011, 31(S2): 21-4,6.

    SUN H H, QIAN Y M, SONG X L, et al. New progress and application of solid phase extraction technology [J]. Modern Chemical Industry, 2011, 31(S2): 21-4,6(in Chinese).

    [42] 王敏, 叶非. 凝胶渗透色谱在农药残留分析前处理中的应用进展 [J]. 农药科学与管理, 2008(6): 9-13,15. doi: 10.3969/j.issn.1002-5480.2008.06.004

    WANG M, YE F. Application of gel permeation chromatography in sample preparation of pesticide residue analysis [J]. Pesticide Science and Administration, 2008(6): 9-13,15(in Chinese). doi: 10.3969/j.issn.1002-5480.2008.06.004

    [43] ZHANG X, ZHENG M, LIANG Y, et al. Particle size distributions and gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in ambient air during haze days and normal days [J]. Science of the Total Environment, 2016, 573: 876-882. doi: 10.1016/j.scitotenv.2016.08.198
    [44] CAO R, ZHANG H, ZHAO L, et al. Hazy weather-induced variation in environmental behavior of PCDD/Fs and PBDEs in winter atmosphere of a north China megacity [J]. Environmental Science & Technology, 2018, 52(15): 8173-8182.
    [45] CHEN L, HUANG Y, HAN S, et al. Sample pretreatment optimization for the analysis of short chain chlorinated paraffins in soil with gas chromatography-electron capture negative ion-mass spectrometry [J]. Journal of Chromatography A, 2013, 1274: 36-43. doi: 10.1016/j.chroma.2012.12.010
    [46] ZHAO X, CUI T, GUO R, et al. A clean-up method for determination of multi-classes of persistent organic pollutants in sediment and biota samples with an aliquot sample [J]. Analytica Chimica Acta, 2019, 1047: 71-80. doi: 10.1016/j.aca.2018.10.011
    [47] LI H, FENG J, SHENG G, et al. The PCDD/F and PBDD/F pollution in the ambient atmosphere of Shanghai, China [J]. Chemosphere, 2008, 70(4): 576-83. doi: 10.1016/j.chemosphere.2007.07.001
    [48] KUZU S L. Compositional variation of PCBs, PAHs, and OCPs at gas phase and size segregated particle phase during dust incursion from the Saharan Desert in the Northwestern Anatolian Peninsula [J]. Advances in Meteorology, 2016: 1-12.
    [49] FRANCISCO A P, NARDOCCI A C, TOMINAGA M Y, et al. Spatial and seasonal trends of polychlorinated dioxins, furans and dioxin-like polychlorinated biphenyls in air using passive and active samplers and inhalation risk assessment [J]. Atmospheric Pollution Research, 2017, 8(5): 979-987. doi: 10.1016/j.apr.2017.03.007
    [50] 张玉兰, 康世昌. 利用多波段热光碳分析仪解析碳质气溶胶特征: 以兰州市为例 [J]. 中国科学:地球科学, 2018, 48(10): 1363-1376.

    ZHANG Y, KANG S. 2018. Characteristics of carbonaceous aerosols analyzed using a multiwavelength thermal/optical carbon analyzer: A case study in Lanzhou city [J]. Science China Earth Sciences, 2018, 48(10): 1363-1376(in Chinese).

    [51] JIAO L, LAO Q, CHEN L, et al. Concentration and influence factors of organochlorine pesticides in atmospheric particles in a coastal island in Fujian, southeast China [J]. Aerosol and Air Quality Research, 2018, 18(12): 2982-2996. doi: 10.4209/aaqr.2018.04.0126
    [52] 夏丹, 高丽荣, 郑明辉. 全二维气相色谱分析持久性有机污染物的应用进展 [J]. 色谱, 2017, 35(1): 91-98. doi: 10.3724/SP.J.1123.2016.08029

    XIA D, GAO L R, ZHENG M H. Recent developments in comprehensive two-dimensional gas chromatography for analysis of persistent organic pollutants [J]. Chinese Journal of Chromatography, 2017, 35(1): 91-98(in Chinese). doi: 10.3724/SP.J.1123.2016.08029

    [53] XU T, LV Y, CHENG T, et al. Using comprehensive GC × GC to study PAHs and n-alkanes associated with PM2.5 in urban atmosphere [J]. Environmental Science and Pollution Research, 2015, 22(7): 5253-5262. doi: 10.1007/s11356-014-3695-9
    [54] FENG B, LI L, XU H, et al. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment [J]. Journal of Environmental Sciences, 2019, 77: 11-19. doi: 10.1016/j.jes.2017.12.025
    [55] WANG Y, ZHU X, GAO Y, et al. Monitoring gas- and particulate-phase short-chain polychlorinated paraffins in the urban air of Dalian by a self-developed passive sampler [J]. Journal of Environmental Sciences, 2019, 80: 287-295. doi: 10.1016/j.jes.2019.01.007
    [56] 卞锐, 徐春晓, 于萍, 等. 气相色谱–串联质谱技术在环境监测中的应用进展 [J]. 化学分析计量, 2019, 28(6): 130-133. doi: 10.3969/j.issn.1008-6145.2019.06.030

    BIAN R, XU C X, YU P, et al. Application and advance of gas chromatography–tandem mass spectrometry in environmental monitoring [J]. Chemical Analysis and Meterage, 2019, 28(6): 130-133(in Chinese). doi: 10.3969/j.issn.1008-6145.2019.06.030

    [57] FRANCISCO A P, HARNER T, ENG A. Measurement of polyurethane foam - air partition coefficients for semivolatile organic compounds as a function of temperature: Application to passive air sampler monitoring [J]. Chemosphere, 2017, 174: 638-642. doi: 10.1016/j.chemosphere.2017.01.135
    [58] 史俊文, 朱小红, 汪庆庆, 等. 控温超声提取-高效液相色谱法测定空气PM2.5中16种多环芳烃 [J]. 理化检验(化学分册), 2019, 55(2): 136-140.

    SHI J W, ZHU X H, WANG Q Q, et al. HPLC determination of 16 polycyclic aromatic hydrocarbons in atmospheric PM2.5 with ultrasonic extraction of temperature control [J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(2): 136-140(in Chinese).

    [59] 赵文生, 范宁伟, 翦英红. 索氏提取-高效液相色谱法测定大气颗粒物中的十溴联苯醚 [J]. 信阳师范学院学报(自然科学版), 2015, 28(2): 222-225.

    ZHAO W S, FAN N W, JIAN Y H. Determination of decabrominated diphenyl ether in gas particle samples using soxhlet extract method followed by high performance liquid chromatography [J]. Journal of Xinyang Normal University Natural Science Edition, 2015, 28(2): 222-225(in Chinese).

    [60] FUJIWARA F, GUIñEZ M, CERUTTI S, et al. UHPLC-(+)APCI-MS/MS determination of oxygenated and nitrated polycyclic aromatic hydrocarbons in airborne particulate matter and tree barks collected in Buenos Aires city [J]. Microchemical Journal, 2014, 116: 118-124.
    [61] JIANG B, LIANG Y, XU C, et al. Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance [J]. Environmental Science, 2014, 48(9): 4716-4723.
    [62] KUANG B Y, YEUNG H S, LEE C C, et al. Aromatic formulas in ambient PM2.5 samples from Hong Kong determined using FT-ICR ultrahigh-resolution mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2018, 410(24): 6289-6304. doi: 10.1007/s00216-018-1239-8
    [63] NING C, GAO Y, ZHANG H, et al. Molecular characterization of dissolved organic matters in winter atmospheric fine particulate matters (PM2.5) from a coastal city of northeast China [J]. Science of the Total Environment, 2019, 689: 312-321. doi: 10.1016/j.scitotenv.2019.06.418
    [64] AN Y, XU J, FENG L, et al. Molecular characterization of organic aerosol in the Himalayas: Insight from ultra-high-resolution mass spectrometry [J]. Atmospheric Chemistry and Physics, 2019, 19(2): 1115-1128. doi: 10.5194/acp-19-1115-2019
    [65] WU C, YANG J, FU Q, et al. Molecular characterization of water-soluble organic compounds in PM2.5 using ultrahigh resolution mass spectrometry [J]. Science of the Total Environment, 2019, 668: 917-924. doi: 10.1016/j.scitotenv.2019.03.031
    [66] LYU R, SHI Z, ALAM M S, et al. Insight into the composition of organic compounds ( ≥  C6) in PM2.5 in wintertime in Beijing, China [J]. Atmospheric Chemistry and Physics, 2019, 19(16): 10865-10881. doi: 10.5194/acp-19-10865-2019
    [67] BOGDAL C, ALSBERG T, DIEFENBACHER P S, et al. Fast quantification of chlorinated paraffins in environmental samples by direct injection high-resolution mass spectrometry with pattern deconvolution [J]. Analytical Chemistry, 2015, 87(5): 2852-2860. doi: 10.1021/ac504444d
    [68] WU Y, GAO S, LIU Z, et al. The quantification of chlorinated paraffins in environmental samples by ultra-high-performance liquid chromatography coupled with Orbitrap Fusion Tribrid mass spectrometry [J]. Journal of Chromatography A, 2019, 1593: 102-109. doi: 10.1016/j.chroma.2019.01.077
    [69] WANG X, HAYECK N, BRUEGGEMANN M, et al. Chemical characteristics of organic aerosols in Shanghai: A study by ultrahigh-performance liquid chromatography coupled with Orbitrap mass spectrometry [J]. Journal of Geophysical Research-Atmospheres, 2017, 122(21): 11703-11722. doi: 10.1002/2017JD026930
    [70] 白慧玲. 环境空气颗粒物中烃类物质的稳定碳、氢同位素组成研究 [D]. 太原: 太原理工大学, 2014.

    BAI H L. The stable carbon and hydrocarbon isotope compositions of hydrocarbons associated with atmospheric particulates [D]. Taiyuan: Taiyuan University of Technology, 2014 (in Chinese).

    [71] SHEN R, LIU Z, CHEN X, et al. Atmospheric levels, variations, sources and health risk of PM2.5-bound polycyclic aromatic hydrocarbons during winter over the North China Plain [J]. Science of the Total Environment, 2019, 655: 581-590. doi: 10.1016/j.scitotenv.2018.11.220
    [72] ZHOU S, YANG L, GAO R, et al. A comparison study of carbonaceous aerosols in a typical North China Plain urban atmosphere: Seasonal variability, sources and implications to haze formation [J]. Atmospheric Environment, 2017, 149: 95-103. doi: 10.1016/j.atmosenv.2016.11.009
    [73] LIANG Z, ZHAO X, CHEN J, et al. Seasonal characteristics of chemical compositions and sources identification of PM2.5 in Zhuhai, China [J]. Environmental Geochemistry and Health, 2019, 41(2): 715-728. doi: 10.1007/s10653-018-0164-2
    [74] 张晓岭, 卢益, 朱明吉, 等. 重庆市大气二噁英污染水平及季节变化 [J]. 环境科学, 2014, 35(1): 22-29.

    ZHANG X L, LU Y, ZHU M J, et al. Concentrations of PCDD/Fs in the atmosphere of Chongqing city and its seasonal variation [J]. Environmental Science, 2014, 35(1): 22-29(in Chinese).

    [75] LI H, LI J, LI H, et al. Seasonal variations and inhalation risk assessment of short-chain chlorinated paraffins in PM2.5 of Jinan, China [J]. Environmental pollution, 2019, 245: 325-330. doi: 10.1016/j.envpol.2018.10.133
    [76] ZHU X, BAI H, GAO Y, et al. Concentrations and inhalation risk assessment of short-chain polychlorinated paraffins in the urban air of Dalian, China [J]. Environmental Science and Pollution Research, 2017, 24(26): 21203-21212. doi: 10.1007/s11356-017-9775-x
    [77] JI D, ZHANG J, HE J, et al. Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China [J]. Atmospheric Environment, 2016, 125: 293-306. doi: 10.1016/j.atmosenv.2015.11.020
    [78] QI M, JIANG L, LIU Y, et al. Analysis of the characteristics and sources of carbonaceous aerosols in PM2.5 in the Beijing, Tianjin, and Langfang region, China [J]. International Journal of Environmental Research and Public Health, 2018, 15(7): 1483-1497. doi: 10.3390/ijerph15071483
    [79] CAO J J, SHEN Z X, CHOW J C, et al. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities [J]. Journal of the Air & Waste Management Association, 2012, 62(10): 1214-1226.
    [80] GUO Z G, SHENG L F, FENG J L, et al. Seasonal variation of solvent extractable organic compounds in the aerosols in Qingdao, China [J]. Atmospheric Environment, 2003, 37(13): 1825-1834. doi: 10.1016/S1352-2310(03)00064-5
    [81] 吴瑕, 曹芳, 翟晓瑶, 等. 长春秋季细颗粒物中有机气溶胶组成特征及来源 [J]. 环境科学, 2019, 40(8): 3438-3446.

    WU X, CAO F, ZHAI X Y, et al. Molecular composition and source apportionment of fine organic aerosols in autumn of Changchun [J]. Environmental Science, 2019, 40(8): 3438-3446(in Chinese).

    [82] XING J, TANG H, LEE W J, et al. Part Ⅱ: PM2.5 and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the ambient air of northern China [J]. Aerosol and Air Quality Research, 2017, 17(8): 2010-2026. doi: 10.4209/aaqr.2017.06.0211
    [83] WANG C, LI W, CHEN J, et al. Summer atmospheric polybrominated diphenyl ethers in urban and rural areas of northern China [J]. Environmental Pollution, 2012, 171: 234-240. doi: 10.1016/j.envpol.2012.07.041
    [84] HUANG H, GAO L, XIA D, et al. Characterization of short- and medium-chain chlorinated paraffins in outdoor/indoor PM10/PM2.5/PM1.0 in Beijing, China [J]. Environmental pollution, 2017, 225: 674-680. doi: 10.1016/j.envpol.2017.03.054
    [85] WANG P, ZHAO N, CUI Y, et al. Short-chain chlorinated paraffin (SCCP) pollution from a CP production plant in China: Dispersion, congener patterns and health risk assessment [J]. Chemosphere, 2018, 211: 456-464. doi: 10.1016/j.chemosphere.2018.07.136
    [86] PENG X L, HAO Q J, WEN T X, et al. Characteristics of organic carbon and elemental carbon in atmospheric aerosols in the urban area in Beibei, a suburb of Chongqing [J]. Aerosol and Air Quality Research, 2018, 18(11): 2764-2774. doi: 10.4209/aaqr.2017.11.0450
    [87] YANG W, XIE S, ZHANG Z, et al. Characteristics and sources of carbonaceous aerosol across urban and rural sites in a rapidly urbanized but low-level industrialized city in the Sichuan Basin, China [J]. Environmental Science and Pollution Research, 2019, 26(26): 26646-26663. doi: 10.1007/s11356-019-05242-7
    [88] WANG J, HO S S H, CAO J, et al. Characteristics and major sources of carbonaceous aerosols in PM2.5 from Sanya, China [J]. Science of the Total Environment, 2015, 530-531: 110-119. doi: 10.1016/j.scitotenv.2015.05.005
    [89] LI X, KONG S, YIN Y, et al. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 around 2013 Asian Youth Games period in Nanjing [J]. Atmospheric Research, 2016, 174-175: 85-96. doi: 10.1016/j.atmosres.2016.01.010
    [90] 梁秀梅, 邹云锋, 王钰钰, 等. 广州市大气PM2.5中多环芳烃的季节变化特征及健康风险评价 [J]. 环境与健康杂志, 2017, 34(3): 220-224.

    LIANG X M, ZOU Y F, WANG Y Y, et al. Seasonal variation and health risk assessment of polycyclic aromatic hydrocarbons in atmospheric PM2.5 in Guangzhou [J]. Journal of Environment and Health, 2017, 34(3): 220-224(in Chinese).

    [91] 刘立, 胡辉, 李娴, 等. 东莞市大气PM10、PM2.5、PM1中多环芳烃/正构烷烃的污染特征和来源解析 [J]. 环境工程学报, 2017, 11(9): 5138-5151. doi: 10.12030/j.cjee.201609242

    LIU L, HU H, LI X, et al. Pollution characteristics and source apportionment of PAHs and n-alkane in PM10, PM2.5 and PM1 in Dongguan city, China [J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5138-5151(in Chinese). doi: 10.12030/j.cjee.201609242

    [92] TANG H, CUI K, XING J, et al. Part I: PM2.5 and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the ambient air of southern China [J]. Aerosol and Air Quality Research, 2017, 17(6): 1550-1569. doi: 10.4209/aaqr.2017.03.0117
    [93] WEN S, GONG Y, LI J, et al. Particle-bound PCDD/Fs in the atmosphere of an electronic waste dismantling area in China [J]. Biomedical Environmental Science, 2011, 24(2): 102-111.
    [94] 林海涛, 李琦路, 张干, 等. 中国8个城市大气多溴联苯醚的污染特征及人体暴露水平 [J]. 环境科学, 2016, 37(1): 10-15.

    LIN H T, LI Q L, ZHANG G, et al. Atmospheric polybrominated diphenyl ethers in eight cities of China: Pollution characteristics and human exposure [J]. Environmental Science, 2016, 37(1): 10-15(in Chinese).

    [95] GUO T, LIN T, LI Y, et al. Occurrence, gas-particle partitioning, and sources of polybrominated diphenyl ethers in the atmosphere over the Yangtze River Estuary, East China Sea [J]. Science of the Total Environment, 2019, 693: 133538-133549. doi: 10.1016/j.scitotenv.2019.07.344
    [96] PENG J, WU D, JIANG Y, et al. Spatiotemporal variability of polybrominated diphenyl ether concentration in atmospheric fine particles in Shenzhen, China [J]. Environmental Pollution, 2018, 238: 749-759. doi: 10.1016/j.envpol.2018.03.076
    [97] SU P H, TOMY G T, HOU C Y, et al. Gas/particle partitioning, particle-size distribution of atmospheric polybrominated diphenyl ethers in southeast Shanghai rural area and size-resolved predicting model [J]. Chemosphere, 2018, 197: 251-261. doi: 10.1016/j.chemosphere.2018.01.005
    [98] ZHUO M, MA S, LI G, et al. Chlorinated paraffins in the indoor and outdoor atmospheric particles from the Pearl River Delta: Characteristics, sources, and human exposure risks [J]. Science of the Total Environment, 2019, 650(Pt 1): 1041-1049.
    [99] WEI X Y, LIU M, YANG J, et al. Characterization of PM2.5-bound PAHs and carbonaceous aerosols during three-month severe haze episode in Shanghai, China: Chemical composition, source apportionment and long-range transportation [J]. Atmospheric Environment, 2019, 203: 1-9. doi: 10.1016/j.atmosenv.2019.01.046
    [100] ZHANG N, CAO J, LI L, et al. Characteristics and source identification of polycyclic aromatic hydrocarbons and n-alkanes in PM2.5 in Xiamen [J]. Aerosol and Air Quality Research, 2018, 18(7): 1673-1683. doi: 10.4209/aaqr.2017.11.0493
    [101] 王磊, 周家斌, 苑金鹏, 等. 武汉大气PM2.5中烃类有机物污染特征及来源辨析 [J]. 武汉理工大学学报, 2013, 35(12): 140-145. doi: 10.3963/j.issn.1671-4431.2013.12.027

    WANG L, ZHOU J B, YUAN J P, et al. Distribution and source identification of hydrocarbons in atmospheric PM2.5 in Wuhan [J]. Journal of Wuhan University of Technology, 2013, 35(12): 140-145(in Chinese). doi: 10.3963/j.issn.1671-4431.2013.12.027

    [102] 葛红波, 郭丽, 李爱民, 等. 武汉市大气中多溴联苯醚的分布特征研究 [J]. 环境科学与技术, 2018, 41(2): 77-82.

    GE H B, GUO L, LI A M, et al. Study of the level and distribution of polybrominated diphenyl ethers (PBDEs) in the atmosphere of Wuhan [J]. Environmental Science & Technology, 2018, 41(2): 77-82(in Chinese).

    [103] WANG L, ZHAO Y, YI X, et al. Spatial distribution of atmospheric PAHs and their genotoxicity in petrochemical industrialized Lanzhou valley, northwest China [J]. Environmental Science and Pollution Research, 2017, 24(14): 12820-12834. doi: 10.1007/s11356-017-8808-9
    [104] XU H, HO S S H, GAO M, et al. Microscale spatial distribution and health assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) at nine communities in Xi'an, China [J]. Environmental Pollution, 2016, 218: 1065-1073. doi: 10.1016/j.envpol.2016.08.058
    [105] TURAP Y, DING X, TALIFU D, et al. Concentration characteristics, source apportionment, and oxidative damage of PM2.5-bound PAHs in petrochemical region in Xinjiang, NW China. pdf [J]. Environmental Science and Pollution Research, 2018, 25: 22629-22640. doi: 10.1007/s11356-018-2082-3
    [106] YE L, ZHANG C, HAN D, et al. Characterization and Source Identification of Polybrominated Diphenyl Ethers (PBDEs) in Air in Xi'an: Based on a Five-Year Study [J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 520-536. doi: 10.3390/ijerph16030520
    [107] LI C, CHEN P, KANG S, et al. Concentrations and light absorption characteristics of carbonaceous aerosol in PM2.5 and PM10 of Lhasa city, the Tibetan Plateau [J]. Atmospheric Environment, 2016, 127: 340-346. doi: 10.1016/j.atmosenv.2015.12.059
    [108] WANG C, WANG X, GONG P, et al. Long-term trends of atmospheric organochlorine pollutants and polycyclic aromatic hydrocarbons over the southeastern Tibetan Plateau [J]. Science of the Total Environment, 2018, 624: 241-249. doi: 10.1016/j.scitotenv.2017.12.140
    [109] SHEN R, WANG Y, GAO W, et al. Size-segregated particulate matter bound polycyclic aromatic hydrocarbons (PAHs) over China: Size distribution, characteristics and health risk assessment [J]. Science of the Total Environment, 2019, 685: 116-123. doi: 10.1016/j.scitotenv.2019.05.436
    [110] 孙俊玲, 王鹏焱, 李英明, 等. 北京市冬季大气PM10中二噁英的污染水平与分布特征 [J]. 环境化学, 2019, 38(4): 713-720. doi: 10.7524/j.issn.0254-6108.2018052103

    SUN J L, WANG P Y, LI Y M, et al. Pollution levels and spatial distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the atmospheric PM10 of Beijing in winter [J]. Environmental Chemistry, 2019, 38(4): 713-720(in Chinese). doi: 10.7524/j.issn.0254-6108.2018052103

    [111] 孙俊玲, 张庆华, 李英明. 北京市冬季大气细颗粒物中二噁英的污染特征 [J]. 环境化学, 2019, 38(9): 1982-1989. doi: 10.7524/j.issn.0254-6108.2018121903

    SUN J L, ZHANG Q H, LI Y M. Profiles of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in atmospheric fine particulate matter of Beijing in winter [J]. Environmental Chemistry, 2019, 38(9): 1982-1989(in Chinese). doi: 10.7524/j.issn.0254-6108.2018121903

    [112] BESIS A, BOTSAROPOULOU E, VOUTSA D, et al. Particle-size distribution of polybrominated diphenyl ethers (PBDEs) in the urban agglomeration of Thessaloniki, northern Greece [J]. Atmospheric Environment, 2015, 104: 176-185. doi: 10.1016/j.atmosenv.2015.01.019
    [113] CAO R, ZHANG H, GENG N, et al. Diurnal variations of atmospheric polycyclic aromatic hydrocarbons (PAHs) during three sequent winter haze episodes in Beijing, China [J]. Science of the Total Environment, 2018, 625: 1486-1493. doi: 10.1016/j.scitotenv.2017.12.335
    [114] HUNG N T, TING H W, CHI K H. Evaluation of the relative health risk impact of atmospheric PCDD/Fs in PM2.5 in Taiwan [J]. Aerosol and Air Quality Research, 2018, 18(10): 2591-2599. doi: 10.4209/aaqr.2018.03.0094
    [115] 蒋君丽, 张承中, 马万里, 等. 西安城区秋季大气中多溴联苯醚的污染特征及来源分析 [J]. 环境科学, 2011, 32(8): 2226-2230.

    JIANG J L, ZHNAG C Z, MA W L, et al. Pollution characteristics and source apportionment of polybrominated diphenyl ethers in autumn air of Xi′an [J]. Environmental Science, 2011, 32(8): 2226-2230(in Chinese).

    [116] WANG T, HAN S, YUAN B, et al. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting [J]. Environmental Pollution, 2012, 171: 38-45. doi: 10.1016/j.envpol.2012.07.025
  • 加载中
表( 2)
计量
  • 文章访问数:  6520
  • HTML全文浏览数:  6520
  • PDF下载数:  161
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-12
  • 录用日期:  2021-11-26
  • 刊出日期:  2021-12-27
阿米拉, 耿柠波, 曹蓉, 张海军, 朱秀华, 陈吉平. 大气颗粒物中典型有机物的分析方法和污染特征研究进展[J]. 环境化学, 2021, 40(12): 3774-3786. doi: 10.7524/j.issn.0254-6108.2020081204
引用本文: 阿米拉, 耿柠波, 曹蓉, 张海军, 朱秀华, 陈吉平. 大气颗粒物中典型有机物的分析方法和污染特征研究进展[J]. 环境化学, 2021, 40(12): 3774-3786. doi: 10.7524/j.issn.0254-6108.2020081204
A Mila, GENG Ningbo, CAO Rong, ZHANG Haijun, ZHU Xiuhua, CHEN Jiping. Research progress of analytical methods and pollution characteristics of typical organic pollutant in atmospheric particulate matter[J]. Environmental Chemistry, 2021, 40(12): 3774-3786. doi: 10.7524/j.issn.0254-6108.2020081204
Citation: A Mila, GENG Ningbo, CAO Rong, ZHANG Haijun, ZHU Xiuhua, CHEN Jiping. Research progress of analytical methods and pollution characteristics of typical organic pollutant in atmospheric particulate matter[J]. Environmental Chemistry, 2021, 40(12): 3774-3786. doi: 10.7524/j.issn.0254-6108.2020081204

大气颗粒物中典型有机物的分析方法和污染特征研究进展

    通讯作者: Tel:0411-84109335, E-mail:dlzhuxiuhua@sina.com
  • 1. 大连交通大学环境与化学工程学院,大连,116028
  • 2. 中国科学院大连化学物理研究所,大连,116023
基金项目:
国家自然科学基金(21607152,21577009,91643104,21906158)资助.

摘要: 有机污染物是大气颗粒物的重要组成部分,约占颗粒物质量的20%—50%。颗粒物中的有机污染物具有高毒性,长期暴露能够给人群带来潜在的健康风险;有机污染物参与气溶胶成核,影响空气质量和能见度,进而改变区域气候,其引起的健康与环境效应已成为民众关注的焦点。大气颗粒物中有机污染物的分析技术是准确判断其来源和污染特征的重要一环。本文对颗粒物中常见有机污染物的分析技术、污染特征及主要来源进行了综述。系统介绍了有机污染物的样品采样、提取净化和分离分析技术,对比了不同分析方法的优势,总结了我国大气颗粒物中有机污染物的时空分布和气粒分配特征,并探讨了引起相关差异的原因,为后续深入认识大气颗粒物中有机污染物的分布特征提供参考。最后,对大气颗粒物中有机物的分析技术和发展方向进行了总结与展望。

English Abstract

  • 在过去几十年间,我国经济发展迅速,同时由于缺乏足够的大气环境保护措施使得大气污染日益严重,雾霾频繁发生。大气颗粒物(atmospheric particulate matter)是我国大多数地区大气污染的首要污染物,也称为大气气溶胶(atmospheric aerosol),是大气中复杂组分组成的固体和液体颗粒物[1]。其环境效应和健康效应主要体现在通过与太阳和陆地辐射的相互作用影响全球气候变化,高浓度颗粒物的长期暴露给人体健康带来巨大风险,这些都使得颗粒物逐渐成为民众关注的焦点[2-3]。另外,大气颗粒物携带大量生物有机体和病原体(花粉、孢子、细菌、病毒等)[4],导致呼吸道疾病、心血管疾病、肺功能下降或过早死亡等健康风险[5]

    有机污染物是大气颗粒物的主要组成部分,约占颗粒物的20%—50%,在重污染事件中有机物对颗粒物的贡献>50%[6-7],同时有机物也是颗粒物组成中影响能见度的最重要组分[8]。大气颗粒物中有机物成分复杂,来源广泛,含有大量对人体有长期毒性、致癌性、致畸性的化合物,然而目前只有少部分能被现有的分析技术所检测,如多环芳烃(PAHs)、有机氯农药(OCPs)、多氯联苯(PCBs)、多氯联苯并对二噁英和呋喃(PCDD/Fs)[9]。目前对大气颗粒物中有机污染物的浓度、构成、形成机制的认识程度远不及硝酸盐、硫酸盐、铵盐等其它成分。尚未对大气颗粒物中有机污染物的分析方法和污染特征进行的系统综述,而这些恰恰是颗粒物毒性效应研究的重要基础。本文将对大气颗粒物中有机污染物的样品前处理和仪器分析方法,时空分布特征和气粒分布特征进行详细综述,为相关研究提供参考和依据。

    • 有机物作为大气颗粒物中的重要组分,根据其来源分为一次有机碳(POC)和二次有机碳(SOC),一次有机碳主要来自于煤、石油等化石燃料的不完全燃烧,二次有机碳主要来源于燃煤、机动车和燃油锅炉等排放的气态前体物通过各种复杂反应生成[10-11]。有机碳代表了上百种脂肪烃类、芳烃类、酸类、糖类、醛酮类有机物的混合物,如蛋白质、纤维素、类腐殖质等水溶性有机碳(WSOC);通过挥发性有机物(VOC)的均相或非均相反应生成的硝基多环芳烃、脂肪醇、脂肪酸类和其他烷酸类等二次有机气溶胶(SOA);以及引起诱变和致癌的PAHs、PCDD/Fs等持久性有机污染物(POPs)[12]。在有机物的组成中,尽管持久性有机污染物含量较低,但由于其具有高毒性、持久性、生物积累性、远距离迁移性等特征,对生态环境和人体健康的影响巨大,因此本文重点对该部分内容进行详细综述。另外,在大气有机污染物来源追踪方面,由于部分有机物的分子组成具有很强的源特征性,使其成为源排放示踪化合物的最佳候选者。国外学者应用生物标志物进行了大量研究,并在这些研究中总结出城市大气中具有独特来源的有机示踪物,如燃煤排放的烷基苉类化合物和生物质燃烧排放的左旋葡聚糖、植物表面碎屑中的高分子量的奇碳烷烃、香烟烟雾中的高分子量异、反异烷烃、肉类烹饪中的胆甾醇等[13-14]。Giorio等[15]采用单颗粒无气溶胶质谱结合源解析(PMF)模型对伦敦的交通源进行了细分,并用氧化型有机气溶胶指示二次气溶胶形成,芳香性有机气溶胶指示机动车排放。对颗粒物中有机物的研究有助于识别关键污染物和污染源,认识其形成和演变规律。

    • 持久性有机污染物作为大气颗粒物中有机物的重要组成部分,是指环境中的一类具有难降解性、生物累积性、长距离迁移性和高毒性等特点的有机化合物,POPs通过食物链累积对人类健康产生影响。2001年包括中国在内的90多个国家和地区签署了《关于持久性有机污染物的斯德哥尔摩公约》。公约规定的首批持久性有机物有:为用于农业、工业生产等而刻意生产的化学品,如艾氏剂、氯丹、滴滴涕等有机氯农药、PCBs和六氯苯(HCB);在工业生产和燃烧等过程中无意识生产的化学物质,如PCDD/Fs。目前很多国家都已禁止使用OCPs,我国在1983年规定停止生产OCPs。在大气颗粒物中检测到的OCPs部分来自新使用的,部分来自于历史残留。在农药生产、加工或施用过程中,OCPs能够被大气中的飘尘所吸附,以气体或气溶胶的状态悬浮于空气中,随大气运动而扩散,使污染区域不断扩大[16]。大气中的二噁英类化合物主要来自燃烧源(包括生活垃圾焚烧、医药废物燃烧、化工厂废弃物燃烧、燃煤、钢铁冶炼等过程),其中,生活垃圾焚烧产生二噁英的机理比较复杂,关注度最高[17]

      随着研究的深入,不断有新污染物被列入POPs受控名单中,如PAHs、多溴联苯醚(PBDEs)、短链氯化石蜡(SCCPs)、多氯化萘(PCNs)等。PAHs主要来源于煤、石油和生物质的不完全燃烧和热解,以及交通和工业排放[18],被大气颗粒物吸附后能够随呼吸进入人体,其致癌性、致突变性等健康风险已引起人们的广泛关注。美国环境保护署(EPA)将在大气颗粒物中检测到的16种多环芳烃列为优先控制污染物,世界卫生组织在其基础上又增加到了17种[19]。PBDEs由于热稳定性好,阻燃效率高,被广泛用作添加型阻燃剂应用于包括纺织、家具、建材和电子等产品当中。作为添加型阻燃剂,由于没有化学键的束缚,易于从应用它的产品中向环境释放。SCCPs的碳链长度为C10—C13,含有大量的异构体和同系物,常作为金属加工液、塑料增塑剂、阻燃剂、绘画颜料添加剂、皮革加脂剂等[20]。目前世界范围内的短链氯化石蜡产量至少为每年16.5万吨[21],中国作为全球最大的氯化石蜡生产国和消费国,约占全球总产量的15%[22],与中链氯化石蜡(MCCPs)、长链氯化石蜡(LCCPs)相比,由于其潜在毒性高、容易向环境释放等特点更受人们的关注。

    • 大气颗粒物样品采集常采用滤膜捕集空气中颗粒物,通过惯性碰撞、截留、重力沉降、扩散等一系列物理原理将颗粒物从环境空气中分离出来,并收集在滤膜上[23]。常用的采样介质主要有聚氨酯软性泡沫(PUF)、玻璃纤维滤膜(GFF)、半透膜(SPM)、石英纤维滤膜(QFF)和聚四氟乙烯膜(PTFE)等[24]。采样滤膜的选择和采样偏差的消除是PM2.5样品准确采集的关键。采样时一般选择吸附容量大、收集效率高、化学性质稳定、空白值低、回收率高的滤膜[25]。石英纤维滤膜由于其颗粒物捕集效率高、碳本底值低、耐高温(>900 ℃)等特点,已成为最常用的滤膜。采样前,滤膜须进行灼烧(450 ℃以上)预处理,以去除可能存在的有机类杂质的干扰,然后放置在干燥器中平衡48 h至恒重,采样后的滤膜须冷冻(−20 ℃)保存用于后续有机物的分析。

    • 大气颗粒物样品采集后,样品需经预处理,以去除干扰后续分析的杂质进而满足痕量分析的要求。通常需将有机物从大气颗粒物中提取出来,再进行净化、分离、浓缩处理。大气颗粒物样品中有机组分的提取一般采用溶剂萃取法,常用的有索氏提取法、加速溶剂萃取法、超声提取法、微波提取法及超临界流体萃取法等。各种萃取方法优缺点见表1。其中索氏提取是EPA规定的标准提取方法,其萃取效率高,但耗时长、耗溶剂多、操作比较麻烦。近年来发展起来的超声波提取法,加速溶剂提取法以及超临界流体萃取法则具有溶剂用量少,快速高效的特点,逐渐被广泛应用。

      大气颗粒物样品中有机组分提取亦可采用热脱附法(TD)。与溶剂萃取方法相比,TD具有不使用有机溶剂,操作简单,不受溶剂杂质的污染等优点。热脱附法借助直接进样技术在气相色谱(GC)进样口加热样品,使目标物质脱附分离并进入气相色谱,克服了传统前处理方法的不足,已成为传统方法的重要替代技术[32]。目前热脱附结合气相色谱-质谱(GC-MS)联用技术在大气挥发性有机物(VOCs)、半挥发性有机物(SVOC)的测定中已得到广泛使用[33-34]。单级热脱附目标物质直接进入色谱柱,灵敏度较低,二级热脱附加入了冷阱系统对目标物质进行富集并二次解吸,能够提高色谱分离效率及分析灵敏度[35]

    • 样品经提取后,提取液中除了待测物质,还存在大量的共萃取物,如腐殖酸、脂类、色素和其它杂质,对后续仪器分析会造成一定的干扰。为消除杂质干扰,萃取后溶液一般需要进一步净化,并根据分析的目标组分采用合适极性的溶剂将其洗脱。目前常用的分离净化方法有硅胶柱层析法、氧化铝柱层析法、固相萃取柱(SPE)和凝胶渗透色谱法(GPC)等。

      柱层析一般以活性硅胶、碱性氧化铝、酸性氧化铝等作为固定相,根据不同组分的极性选择不同的洗脱溶剂。层析柱填料在使用之前均需要在550 ℃的马弗炉中进行活化。Li等[36]利用活性硅胶柱净化,用正己烷/二氯甲烷(1∶1,V/V)洗脱,成功从样品中分离出卤代阻燃剂。Mari等[37]采用多层复合硅胶柱分离大气颗粒物中的PCNs、PCDD/Fs和PCBs,层析柱装填方式为从下到上依次为碱性硅胶、硅胶、44%酸化硅胶和无水硫酸钠。Wang等[38]用硅胶-氧化铝柱净化分离样品中的多环芳烃。

      固相萃取柱是利用固体吸附剂吸附样品中的目标化合物进而将其与其他干扰物质分离,再用洗脱液将其洗脱,从而实现目标化合物的分离与浓缩。SPE的分离效率主要受其吸附剂和洗脱液的影响,目前常用的吸附剂有C18、HLB吸附剂、多孔石墨碳、碳纳米管、氧化铝等[39]。SPE技术目前广泛应用于农药残留、PCBs、PCDD/Fs等的分析检测中[40]。近年来,在SPE的基础上发展出如固相微萃取(SPME)、基质固相分散萃取(MSPD)、分子印迹固相萃取(MISPE))、整体柱固相萃取(Monolithic SPE)、碳纳米管固相萃取(CNT-SPE)等新型样品净化方法,使净化速度更快、更高效、更简便[41]

      GPC是根据样品各组分相对分子质量的不同进行洗脱分离的一项技术,是一种非破坏性有效去除脂类和大分子化合物的净化方法,成为农药残留分析前处理的主要净化手段之一。GPC柱填料具有良好的化学惰性,一定的机械强度,流动阻力小,不吸附待测物等特点。常用的柱填料有交联聚苯乙烯、交联聚丙烯酰胺、交联聚乙酸乙烯酯、多孔玻璃等[42]。目前已经实现全自动GPC净化仪的商品化,大大降低了GPC的分离时间。Coscollà等[30]采用Waters凝胶净化系统分离PM10中的40种农药取得良好的效果。GPC与层析柱等净化技术相比,具有净化容量大、可重复利用、装置自动化、净化时间短、简便等优点,适用于不稳定的化合物,但难以分离有机卤素化合物。

      对复杂样品分离净化时,单一的净化方法一般难以将目标物与其干扰物完全分离,需要多个净化柱联合使用,对于组成极为复杂的大气颗粒物,其提取物常需经多个不同性质的净化柱以实现对单一或多种有机物的分离净化。Zhang等[43]利用多层硅胶柱、碱性氧化铝柱、活性炭柱分离颗粒物样品中的二噁英,并对二噁英在颗粒物中的粒径分布和气粒分配特征进行了研究。Cao等[44]利用多层硅胶柱和碱性氧化铝柱结合,分离大气颗粒物中的PBDEs和PCDD/Fs,并研究其在雾霾期和非雾霾期的污染特征。Chen等[45]优化了硅胶柱和多层硅胶-弗罗里土复合柱,成功地实现了22种多氯联苯、23种OCPs和3种毒杀芬与SCCPs的分离。Zhao等[46]开发了一种同时分离八种POPs的方法,首先采用多层硅胶柱净化分离,然后用碱性氧化铝柱和弗罗里土柱进一步分离,实现了对PCBs、PCDD/Fs、PBDEs、PBDD/Fs、PCNs、OCPs、SCCPs和双环辛烷的分离净化。Li等[47]利用多层硅胶柱、弗罗里土柱分离净化大气中的PCDD/Fs和PBDD/Fs,研究上海市各区域的污染状态。Kuzu等[48]结合硅酸-氧化铝柱分离颗粒物中的PCBs、PAHs和OCPs、研究其沙尘暴期间的气-粒分配和组成变化。Francisco等[49]用酸化硅胶柱纯化后,在氧化铝柱上分离了PCDD/Fs和dl-PCB(共平面多氯联苯)组分,并评估了PCDD/Fs的人体暴露风险。

    • 碳组分分析方法根据所利用的光学原理不同,分为热光反射法(TOR)及热光透射法(TOT)。目前市场上根据TOR/TOT法研制的仪器主要有两个,分别为美国Sunset公司研制的颗粒物碳质组分分析仪和美国沙漠所研制的DRI Model 2001A型OC/EC分析仪,可对环境空气质量进行监测和研究,也适用于各类污染源、水及沉积物中有机碳和元素碳含量的监测和研究[23]。张玉兰等[50]利用多波段热光碳分析仪解析碳质气溶胶特征,相对于DRI Model 2001A碳分析系统单波段(633 nm)激光光源,DRI Model 2015用于界定反射光(OPR)和透射光(OPR)的激光光源升级为7个波段,进一步完善不同碳组分在源解析中的应用。

    • GC具有高选择性,高灵敏度,速度快和应用范围广的特点。常用于分析气体有机物或易挥发性有机物,但不适于分析沸点高、热稳定性差的有机物。在全部有机物中,仅有约五分之一的样品适用于GC分析。Jiao等[51]采用GC结合电子捕获检测器评估了福建沿海大气颗粒物中OCPs的污染水平和人体健康风险。全二维气相色谱(GC×GC)作为一种新型的色谱技术,其峰容量远高于GC,具有高灵敏度和高分辨率等优点,能有效提高同类化合物的色谱分离程度[52]。Xu等[53]通过全二维气相色谱结合火焰离子化检测器(GC×GC-FID)对大气中的正构烷烃(C8-C18)和PAHs进行分析,其中气相色谱分别使用安捷伦DB-5HT柱和安捷伦DB-17HT柱进行分离,结果表明GC×GC可以改善低浓度半挥发性化合物的分离与定量。

      GC-MS综合运用气相色谱对混合物的分离能力和质谱的定性能力,能够实现对多种污染物的定性与定量分析。目前颗粒物中有机物的分析多依赖GC-MS联用技术,其常用的离子化方法有电子轰击离子源(EI)和化学电离离子源(CI)。根据目标物质的特性可选择不同分辨率的色谱、质谱相结合,以达到更好的分析结果。Feng等[54]利用热脱附结合气相色谱-质谱(TD-GC-MS),通过特征离子的保留时间与标准品进行比对测定PM2.5中的PAHs、正构烷烃等非极性有机化合物。Zhang等[43]采用高分辨气相色谱-高分辨质谱在EI模式测定了大气颗粒物中的PCDD/Fs。我国环境保护标准(HJ-77.2-2008)规定的二噁英类物质的测定是采用同位素稀释高分辨气相色谱-高分辨质谱法(HRGC-HRMS)。Wang等[55]利用高效气相色谱-低分辨质谱仪(HRGC-LRMS)在选择性离子扫描模式(SIM)下分析颗粒物中的SCCPs。相较于GC-MS技术,GC-MS/MS技术对目标物进行二次裂解,可有效降低复杂样品的干扰,也广泛应用于OCPs、PCNs的分析[56- 57]

      HPLC(高效液相色谱)相较于GC-MS不受样品挥发性的限制,应用于大气中有机物的分析具有良好的选择性和灵敏度,是一种较好的分析手段。HPLC法可用于PAHs的分析,检测多数具有荧光性质的PAHs时,HPLC一般采用荧光检测器,而苊烯等不具有荧光特性的化合物,需选择紫外检测器进行检测[58]。我国2013年颁布的环境保护标准(HJ-647—2013)规定采用具有可调波长紫外检测器或荧光检测器和梯度洗脱功能的HPLC测定环境空气和废气中16种多环芳烃。赵文生等[59]采用索式提取结合高效液相色谱-紫外检测法,建立了一种大气颗粒物中的十溴联苯醚的定量分析方法,该方法以C18柱为固定相,甲醇-水溶液为流动相。在10—200 μg·g−1的范围内具有良好的线性关系,检出限为0.53 μg·g−1,定量限为1.77 μg·g−1。UHPLC-MS(超高效液相色谱-质谱法)应用于大气颗粒物中PAHs检测进一步拓展了PAHs的检测范围。Fujiwara等[60]采用UHPLC-MS/MS对大气颗粒物中的PAHs衍生物(OPAHs和NPAHs)进行分析,成功检测到两种OPAHs和两种NPAHs。

      出于对大气颗粒物中有机物高分辨率数据的需求,近年来,傅里叶变换离子回旋共振质谱(FT-ICR-MS)、四极杆-飞行时间质谱(Q-ToF-MS)、静电轨道阱质谱(Orbitrap-MS)等技术逐渐应用于大气颗粒物中未知化学成分的探索,这些先进技术的非靶向筛查功能对于发现环境中的未知污染物有极大的帮助。Jiang等[61]分别利用GC-MS和FT-ICR-MS对大气颗粒物中的PAHs进行分析,发现FT-ICR-MS在分析分子量大的多环芳烃时更有优势,同时还检测到一些含氮、硫和氧的PAHs,而与之相比GC-MS无法检测到PM2.5中约27%的非挥发性和半挥发性PAHs。Kuang等[62]通过FT-ICR-MS对PM2.5中高毒性的芳香族化合物进行了筛查,除了测定出166个未取代的芳香烃,还测定出多种CHN-和CHO-芳香烃化合物,验证了先前报道中含O和含N芳香化合物的存在。Ning[63]、An[64]、Wu[65]等均采用FT-ICR-MS方法测定大气颗粒物种的水溶性有机物,检测到的化合物高达7000多种,主要包括CHO、CHOS、CHON、CHONS、CH、CHS、CHN、CHNS等亚组,其中喜马拉雅北部地区颗粒物中检出水溶性有机物4000多种。Lyu等[66]通过二维气相色谱结合飞行时间质谱(GC×GC-ToF-MS)分析PM2.5中的有机物,共检出300多种化合物,其中正构烷烃、多环芳烃、左旋葡聚糖、支链烷烃、正构烯烃和烷基苯等六类化合物的含量占有机物质量的66%。Bogdal等[67]建立了(Q-ToF-HRMS)分析检测环境样品中的氯化石蜡的方法,该方法采用氯离子大气压化学电离源,在全扫描条件下进行样品分析,结果表明LCCP仪器检出限最低(0.02—0.03 ng·μL−1),其次为MCCP(0.08—0.2 ng·μL−1)和SCCP(0.1—1.2 ng·μL−1)。Wu等[68]基于UPLC-Orbitrap-MS开发出一种适用于48种SCCPs和MCCPs的分析方法,该方法同时还可以消除氯化烯烃的干扰。Wang等[69]采用UPLC-Orbitrap MS技术对上海地区大气细颗粒物中的有机组分进行了非靶向筛查,在ESI+和ESI-模式下,分别检测到860—1790和810—1510个有机化合物。总之,高分辨质谱技术在环境有机污染物物检测中的应用,扩大了有机物的检测范围,为颗粒物的健康风险评估提供了更丰富的依据。

    • 表2所示,我国大气颗粒物中的PAHs、PCDD/Fs、PBDEs、SCCPs等典型有机物的研究相对较多。整体上大气颗粒物中PAHs和SCCPs的浓度远高于PCDD/Fs和PBDEs的浓度,以北京为例,其浓度水平总体呈现为PAHs>SCCPs>PCDD/Fs>PBDEs。由于大气颗粒物中OC代表了上百种有机物的混合物,大气颗粒物中持久性有机污染物的含量在OC中所占的比率较低,PAHs含量约占OC浓度的0.01%—0.6%,在北京、天津等污染较重的城市PAHs的浓度占比约为0.6%,而在西藏等偏远地区PAHs浓度只占其0.01%左右;SCCPs浓度约占OC的0.1%左右,而PCDD/Fs和PBDEs的浓度约占OC的十万分之一或更低。由于PAHs、PCDD/Fs、PBDEs、SCCPs等有机污染物具有难降解性和高毒性等特征,对人体和生态环境的危害巨大而备受关注。

      我国颗粒物中典型有机污染物空间分布差异较大,不同地区大气颗粒物中有机污染物的浓度水平不仅与能源结构有关,还与气候条件(例如:温度、湿度、风速和降雨量)和局地环流有关[70]。北京、天津等北方城市的各污染物总体水平远高于南京、广州等南方城市。北方城市大气颗粒物中OC、PCDD/Fs浓度约为南方城市的1—2倍左右(OC:北方14—40.4 μg·m−3,南方3.4—24 μg·m−3;PCDD/Fs:北方43—119 fg TEQ m–3,南方33.2—47.9 fg TEQ m−3)。而PAHs北方城市约为南方城市的10倍左右(北方81.4—494.7 ng·m−3;南方8.3—69.7 ng·m−3),这是由于我国北方城市冬季普遍供暖,使污染排放量增加,而燃煤是大气中PAHs的主要贡献因素;同时,由于北方温度较低,更容易使污染物附着在颗粒相中;另外,北方地区降水量低于南方,导致其有机污染物浓度水平高于南方城市。北方各个城市中,石家庄PAHs和PCDD/Fs的污染最为严重。武汉、长沙等东部内陆地区和西安、兰州等西部地区OC、PAH、PCDD/Fs等污染物浓度高于厦门、深圳等东部沿海地区。拉萨、鲁朗等偏远地区污染物浓度水平明显低于我国其他地区。这是由于我国东部内陆地区重工业聚集,化工、制造业等第二产业发达,公路、铁路和航空线路比较密集,燃料燃烧污染和交通污染较重,使东部内陆地区有机污染物浓度显著高于沿海地区;此外,沿海地区由于海陆风变换的影响,污染物更容易扩散,使其有机污染物浓度降低。作为非故意释放城市源,PBDEs的空间分布特征与燃烧源排放的PAHs截然不同,没有明显的南北差异,沿海和内陆的污染水平差异也不是很明显。对国内大气颗粒物中SCCPs的污染调查较少,但从有限的数据也能看出北方地区污染水平明显高于南方。由于能源消费水平、排放源分布、人口密度的差异,大气颗粒物中的有机污染物在不同的城市功能区的污染水平存在较大差异,主要表现为工业区>商业区>居民区>郊区[38, 47, 71]

      我国大气颗粒物中有机物的浓度水平存在显著的时间变化,主要表现出秋冬季节高于春夏季节的趋势。对华北平原典型城市大气颗粒物的碳组分研究发现,冬季、春季、夏季、秋季OC浓度分别为(34.35±18.76)、(13.88±4.71)、(24.55±8.42)、(20.31±10.20) ng·m−3,冬季浓度明显高于其他季节[72]。Liang等[73]对珠海市大气颗粒物中的碳组分研究发现夏季OC浓度为(3.42±1.6) μg·m−3,冬季浓度为夏季的3.4—4.0倍。华北京津地区春、夏、秋、冬四季大气颗粒物的PAHs浓度分别为72.5、28.8、154、146 ng·m−3,秋、冬季节浓度明显高于春、夏季节[38]。重庆市大气颗粒物中二噁英季节变化明显,冬季>春季>秋季>夏季,冬季时大气中的二噁英浓度约为夏季的2.2—4.6倍,另外,气粒分布研究表明:冬、春季节二噁英主要分布在颗粒相中,夏、秋季主要分布在气相中[74]。济南市大气PM2.5春、夏、秋、冬SCCPs浓度分别为37.7(21.1—69.9)、29.7(9.8—45.3)、32.8(10.1—46.4)、54.8(27—105) ng·m−3,春季和冬季SCCPs浓度明显高于夏季和秋季[75]。大连地区大气颗粒物中SCCPs浓度变化表现为冬季>秋季>春季>夏季[77]。秋冬季节的浓度水平明显高于春夏季,主要受排放源和气候条件的影响,一是我国北方城市冬季室内供暖需求和工业用途的化石燃料的燃烧,大量生物质的燃烧以及农作物秸秆、树叶、枯草等生物质燃烧等使污染加重;二是冬季气温较低,干燥且降水量少,有些地方大气稳定度处于较高水平,同时逆温现象频繁发生,不利于污染物的扩散和气-固相之间的转化,更倾向于富集在颗粒物上,使其浓度呈现较高水平。而夏季气温高,空气对流条件良好,利于污染物气-固相之间的转化,且夏季雨水较多,季风影响明显,能有效去除颗粒物,故颗粒相浓度呈现较低水平。

      大气颗粒物中有机污染物受其分子量和饱和蒸汽压的影响,更倾向于附着在细颗粒物上。根据Shen等[109]的研究,我国大气颗粒物中的PAHs主要分布在粒径小于1.1 μm的颗粒上,其次为1.1—3.3 μm和3.3—9.0 μm的颗粒。北京市PM10和PM2.5中PCDD/Fs浓度分别为3.69 pg·m−3和3.23 pg·m−3,PM2.5中PCDD/Fs含量占PM10的87%[110-111]。在福建电子垃圾拆解区大气颗粒物中PCDD/Fs浓度为280.6 pg·m−3,其中PM2.5中的浓度为223.3 pg·m−3,表明PCDD/Fs主要附着在细颗粒物上[93]。Besis等[112]对希腊北部的研究表明,大气颗粒物中约58%的PBDEs分布在粒径小于0.49 μm的颗粒物上。北京市室外PM10/PM2.5/PM1.0中短链氯化石蜡的浓度分别为23.9、14.9、10.4 ng·m−3,室内则为61.1、31.4、20.7 ng·m−3 ,随着碳链的增长和氯化程度增加SCCPs更倾向附着在细颗粒上[84]。大气中不同有机污染物在气相和颗粒相中分布可能受温度等气象因素的影响具有一定的差异。北京市雾霾期间,3环PAHs主要分布在气相当中,而4—5环则分布在颗粒相当中[113]。Hung等[114]报道,45.5%—78.3% PCDD/Fs主要分布在颗粒相中,但在受交通影响较大的区域气相浓度高于颗粒相浓度,主要是由于交通影响区域PCDD/Fs以低氯代为主,更容易挥发到气相当中。蒋君丽等[115]对西安城区秋季大气中多溴联苯醚分析表明随着溴原子个数的增加,PBDEs在颗粒相中的含量比重呈现增大趋势,三溴和四溴联苯醚主要存在于气相中,五溴至七溴联苯醚在颗粒相中的含量高于气相,而十溴联苯醚BDE-209只在颗粒相中有检出。根据Wang等[116]研究,北京市大气中SCCPs冬季主要分布在颗粒相中,夏季则在气相中,颗粒相中SCCPs在大气总SCCPs的占比由冬季67%降到夏季6%,表明其分布可能受到温度变化的影响。

    • 近年来,为应对雾霾频发带来的健康效应和环境效应,对大气颗粒物中有机污染物的研究逐渐增多。目前,大气颗粒物中有机物的分析多采用靶向分析,由于有机物化学组成复杂,在颗粒物中分布不均匀,当前鉴定出的有机组分仅占颗粒物中有机物物含量的一小部分,大量未知的有机污染物未得到有效的监测。高分辨质谱的高通量筛查或非靶向筛查技术在鉴定已知有机物的同时能够发现更多新型的有机污染物,可有效提高污染物检测覆盖度,因此,该技术是检测颗粒物中有机物的未来的发展趋势。同时,大气颗粒物的样品采集、样品前处理、仪器分析方法均影响有机物的定量检测,不同研究团队对有机物检测方法的差别,使其检测结果误差较大,因此,应针对不同有机物建立标准的分析方法,以提高样品检测的准确性及不同研究者间数据的可比性。此外,由于我国大气颗粒物中有机污染物浓度水平的差异和人们对居住环境质量的高要求,对现有分析技术进行不断的改进和完善,发展高通量、高灵敏度、高选择性的大气颗粒物有机成分的分析方法是未来的发展趋势。我国目前对部分新型污染物的浓度水平、生成机理等的研究较少,且主要集中在发达地区,偏远地区或山区的研究较少。应鼓励学者加强该领域的研究工作,以填补污染物测量和控制等的数据和技术空白,建立大气有机物数据库。同时结合其他学科(地理、地质学、气象学、物理等)的研究方法,进一步探索有机物在大气中的迁移、扩散、气粒分配等行为。

    参考文献 (116)

返回顶部

目录

/

返回文章
返回