水体中金属(氧化物)纳米颗粒的环境行为与污染控制研究进展

杨晓月, 程和发. 水体中金属(氧化物)纳米颗粒的环境行为与污染控制研究进展[J]. 环境化学, 2021, (2): 436-449. doi: 10.7524/j.issn.0254-6108.2020081301
引用本文: 杨晓月, 程和发. 水体中金属(氧化物)纳米颗粒的环境行为与污染控制研究进展[J]. 环境化学, 2021, (2): 436-449. doi: 10.7524/j.issn.0254-6108.2020081301
YANG Xiaoyue, CHENG Hefa. Research progress in the environmental behavior and pollution control of metal and metal oxide nanoparticles in water[J]. Environmental Chemistry, 2021, (2): 436-449. doi: 10.7524/j.issn.0254-6108.2020081301
Citation: YANG Xiaoyue, CHENG Hefa. Research progress in the environmental behavior and pollution control of metal and metal oxide nanoparticles in water[J]. Environmental Chemistry, 2021, (2): 436-449. doi: 10.7524/j.issn.0254-6108.2020081301

水体中金属(氧化物)纳米颗粒的环境行为与污染控制研究进展

    通讯作者: 程和发, E-mail: hefac@pku.edu.cn
  • 基金项目:

    国家自然科学基金(41725015,41673089)资助.

Research progress in the environmental behavior and pollution control of metal and metal oxide nanoparticles in water

    Corresponding author: CHENG Hefa, hefac@pku.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41725015, 41673089).
  • 摘要: 金属(氧化物)纳米材料在生产和使用过程中,可以通过各种途径进入到水环境中,对水生生物、生态环境和人体健康产生威胁.理解纳米颗粒在水体中的环境行为,对于评估纳米材料的归趋及其对环境和人体的健康风险至关重要.本文概述了金属(氧化物)纳米颗粒的性质、来源和毒性危害,汇总了表征纳米颗粒浓度、粒径及形貌的分析方法与技术,分析了它们在水环境中的环境行为以及影响其稳定性的主要环境因素,并总结了水体中金属(氧化物)纳米颗粒的去除方法和效果的最新研究进展.随着金属(氧化物)纳米材料的广泛应用,未来有必要加强对自然水体中纳米颗粒环境行为的研究,并系统开展纳米颗粒健康风险评估工作,为预测纳米材料进入水环境后的归趋和风险提供科学依据.
  • 加载中
  • [1] 杨艺,张焕祯,刘俊峰.纳米颗粒在水环境中的团聚行为和毒性效应研究[J]. 环境工程,2016,34(9):17-21.

    YANG Y, ZHANG H Z, LIU J F. The aggregation behavior and toxic effect of nanoparticles in aquatic environment[J]. Environmental Engineering, 2016, 34(9):17-21(in Chinese).

    [2] JIMéNEZ-LAMANA J, SLAVEYKOVA V. Silver nanoparticle behaviour in lake water depends on their surface coating[J]. Science of The Total Environment, 2016, 573:946-953.
    [3] MACKEVICA A, OLSSON M E, HANSEN S F, et al. The release of silver nanoparticles from commercial toothbrushes[J]. Journal of Hazardous Materials, 2017, 322:270-275.
    [4] SHI X M, LI Z X, CHEN W, et al. Fate of TiO2 nanoparticles entering sewage treatment plants and bioaccumulation in fish in the receiving streams[J]. NanoImpact, 2016, 3/4:96-103.
    [5] XU L, WANG Z Y, ZHAO J, et al. Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS[J]. Environmental Pollution, 2020, 260:114043.
    [6] EUROPEAN COMMISSION. Commission Regulation (EU) 2018/1881 of 3 December 2018 amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards Annexes Ⅰ, Ⅲ, Ⅵ, Ⅶ, Ⅷ, Ⅸ, Ⅹ, Ⅺ, and XⅡ to address nanoforms of substances[S]. 2018.
    [7] LUO P, ROCA A, TIEDE K, et al. Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems[J]. Journal of Environmental Sciences, 2018, 64:62-71.
    [8] 陈安伟, 曾光明, 陈桂秋, 等.金属纳米材料的生物毒性效应研究进展[J]. 环境化学,2014,33(4):568-575.

    CHEN A W, ZENG G M, CHEN G Q, et al. Advance in research on toxicity of metal nanomaterials[J]. Environmental Chemistry, 2014, 33(4):568-575(in Chinese).

    [9] SHEVLIN D, O'BRIEN N, CUMMINS E. Silver engineered nanoparticles in freshwater systems-likely fate and behaviour through natural attenuation processes[J]. Science of the Total Environment, 2018, 621:1033-1046.
    [10] DE LA CALLE I, MENTA M, SéBY F. Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples:A review[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2016, 125:66-96.
    [11] DUBEY P, MATAI I, KUMAR S U, et al. Perturbation of cellular mechanistic system by silver nanoparticle toxicity:Cytotoxic, genotoxic and epigenetic potentials[J]. Advances in Colloid and Interface Science, 2015, 221:4-21.
    [12] TOPUZ E, VAN GESTEL C A M. An approach for environmental risk assessment of engineered nanomaterials using Analytical Hierarchy Process (AHP) and fuzzy inference rules[J]. Environment International, 2016, 92/93:334-347.
    [13] 于素娟,阴永光,刘景富.水环境中纳米银的生成与转化研究[J]. 中国科学:化学,2017,47(9):1102-1113.

    YU S J, YIN Y G, LIU J F. Natural formation and transformation of silver nanoparticles in the aquatic environment[J]. Science China Chemistry, 2017, 49(9):1102-1113(in Chinese).

    [14] YIN Y, YANG X Y, HU L G, et al. Superoxide-mediated extracellular biosynthesis of silver nanoparticles by the fungus Fusarium oxysporum[J]. Environmental Science & Technology Letters, 2016, 3:160-165.
    [15] YIN Y G, LIU J F, JIANG G B. Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter[J]. ACS Nano, 2012, 6:7910-7919.
    [16] 蒋国翔,沈珍瑶,牛军峰,等.环境中典型人工纳米颗粒物毒性效应[J]. 化学进展,2011,23(8):1769-1781.

    JIANG G X, SHEN Z Y, NIU J F, et al. Nanotoxicity of engineered nanomaterials in the environment[J]. Progress in Chemistry, 2011, 23(8):1769-1781(in Chinese).

    [17] ZIELIńSKA A, COSTA B, FERREIRA M V, et al. Nanotoxicology and nanosafety:Safety-by-design and testing at a glance[J]. International Journal of Environmental Research and Public Health, 2020, 17(13):4657.
    [18] FARKAS J, PETER H, CHRISTIAN P, et al. Characterization of the effluent from a nanosilver producing washing machine[J]. Environment International, 2011, 37(6):1057-1062.
    [19] SADIK O A, DU N, KARIUKI V, et al. Current and emerging technologies for the characterization of nanomaterials[J]. ACS Sustainable Chemistry & Engineering,2014, 2(7):1707-1716.
    [20] TAN Z Q, YIN Y G, GUO X R, et al. Tracking the transformation of nanoparticulate and ionic silver at environmentally relevant concentration levels by hollow fiber flow field-flow fractionation coupled to ICPMS[J]. Environmental Science & Technology, 2017, 51(21):12369-12376.
    [21] LOOSLI F, YI Z, WANG J J, et al. Dispersion of natural nanomaterials in surface waters for better characterization of their physicochemical properties by AF4-ICP-MS-TEM[J]. Science of the Total Environment, 2019, 682:663-672.
    [22] MEHTA N, BASU S, KUMAR A, et al. Separation of zinc oxide nanoparticles in water stream by membrane filtration[J]. Journal of Water Reuse and Desalination, 2016, 6(1):148-155.
    [23] POLESEL F, FARKAS J, KJOS M, et al. Occurrence, characterisation and fate of (nano)particulate Ti and Ag in two Norwegian wastewater treatment plants[J]. Water Research, 2018, 141:19-31.
    [24] YANG Y, XU S M, XU G M, et al. Effects of ionic strength on physicochemical properties and toxicity of silver nanoparticles[J]. The Science of the Total Environment, 2019, 647:1088-1096.
    [25] ADELEYE A S, ORANU E, TAO M et al. Release and detection of nanosized copper from a commercial antifouling paint[J]. Water Research, 2016, 102:374-382.
    [26] ELLIS L A, VALSAMI-JONES E, LEAD J, et al. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment[J]. Science of the Total Environment, 2016, 568:95-106.
    [27] TOPUZ E, SIGG L, TALINLI I, et al. A systematic evaluation of agglomeration of Ag and TiO2 nanoparticles under freshwater relevant conditions[J]. Environmental Pollution, 2014, 193:37-44.
    [28] KIM HA, LEE B T, NA S Y, et al. Characterization of silver nanoparticle aggregates using single particle-inductively coupled plasma-mass spectrometry (spICP-MS)[J]. Chemosphere, 2017, 171:468-475.
    [29] ROMER I, WANG Z W, MERRIFIELD R C, et al. High resolution STEM-EELS study of silver nanoparticles exposed to light and humic substances[J]. Environmental Science & Technology, 2016, 50(5):2183-2190.
    [30] HADIOUI M, MERDZAN V, WILKINSON K J, et al. Detection and characterization of ZnO nanoparticles in surface and waste waters using single particle ICPMS[J]. Environmental Science & Technology, 2015, 49(10):6141-6148.
    [31] KäTZEL U, BEDRICH R, STINTZ M, et al. Dynamic light scattering for the characterization of polydisperse fractal systems:I. Simulation of the Diffusional Behavior[J]. Particle & Particle Systems Characterization, 2008, 25(1):9-18.
    [32] 黄莉.掌握紫外光光度计的使用原理和方法[J]. 民营科技,2015(5):25. HUANG L. Grasp the principles and methods of using Ultraviolet-visible Spectroscopy[J]. Nongovernmental Science Technology, 2015(5

    ):25(in Chinese).

    [33] DONOVAN A R, ADAMS C D, MA Y, et al. Detection of zinc oxide and cerium dioxide nanoparticles during drinking water treatment by rapid single particle ICP-MS methods[J]. Analytical and Bioanalytical Chemistry, 2016, 408(19):5137-5145.
    [34] STEPHAN C,张桢.利用电感耦合等离子体质谱法表征环境中金属纳米颗粒[J]. 环境化学,2017,36(2):459-460. STEPHAN C, ZHANG Z. Characterization of metal nanoparticles in the environment by inductively coupled plasma mass spectrometry[J]. Environmental Chemistry, 2017, 36(2):459-460(in Chinese).
    [35] LEE W W, CHAN W T. Calibration of single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(6):1245-1254.
    [36] 罗瑞平,郑令娜,李亮,等.单颗粒-电感耦合等离子体质谱测定金纳米颗粒[J]. 分析化学,2018,46(6):925-930.

    LUO R P, ZHENG L N, LI L, et al. Effect of data acquisition parameters on characterization of gold nanoparticles by single particle inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6):925-930(in Chinese).

    [37] LABORDA F, BOLEA E AND JIMéNEZ-LAMANA J, et al. Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples[J]. Trends in Environmental Analytical Chemistry, 2016, 9:15-23.
    [38] MICHIKO Y, KAZUO Y, TAKAYUKI I, et al.使用配备单纳米颗粒应用模块的Agilent 7900 ICP-MS实现单个纳米颗粒的自动化高灵敏度分析[J]. 环境化学,2016,35(4):833-835. MICHIKO Y, KAZUO Y, TAKAYUKI I, et al. Automated, high sensitivity analysis of single nanoparticles using the Agilent 7900 ICP-MS with single nanoparticle application module[J]. Environmental Chemistry, 2016, 35(4):833-835(in Chinese).
    [39] BOUR A, MOUCHET F, SILVESTRE J, et al. Environmentally relevant approaches to assess nanoparticles ecotoxicity:A review[J]. Journal of Hazardous Materials, 2015, 283:764-777.
    [40] FRECHETTE-VIENS L, HADIOUI M AND WILKINSON K J. Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS[J]. Talanta, 2019, 200:156-162.
    [41] DONAHUE N D, FRANCEK E R, KIYOTAKE E, et al. Assessing nanoparticle colloidal stability with single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS)[J]. Analytical and Bioanalytical Chemistry, 2020, 412(22):5205-5216.
    [42] 巢静波,王静如,张靖其.基于单颗粒电感耦合等离子体质谱技术的金纳米颗粒准确测定和表征[J]. 分析化学,2020,48(7):946-954.

    CHAO J B, WANG J R, ZHANG J Q. Accurate determination and characterization of gold nanoparticles based on single particle-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2020, 48(7):946-954(in Chinese).

    [43] LEE S, BI X, REED R B, et al. Nanoparticle size detection limits by single particle ICP-MS for 40 elements[J]. Environmental Science & Technology, 2014, 48(17):10291-10300.
    [44] PETERS R J B, van BEMMEL G, MILANI N B L, et al. Detection of nanoparticles in Dutch surface waters[J]. The Science of the Total Environment, 2018, 621:210-218.
    [45] DONOVAN A R, ADAMS C D, MA Y, et al. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment[J]. Chemosphere, 2016, 144:148-153.
    [46] 周小霞,刘景富.环境中金属纳米材料分离及测定方法研究进展[J]. 科学通报,2017,62(24):2758-2769.

    ZHOU X X, LIU J F. Research advances in separation and determination of metallic nanomaterials in the environment[J]. Chinese Science Bulletin, 2017, 62(24):2758-2769(in Chinese).

    [47] ZHOU X X, LIU J F, JIANG G B. Elemental mass size distribution for characterization, quantification and identification of trace nanoparticles in serum and environmental waters[J]. Environmental Science & Technology, 2017, 51(7):3892-3901.
    [48] QU H, MUDALIGE T K, LINDER S W. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles[J]. Journal of Chromatography A, 2016, 1429:348-353.
    [49] 严玉鹏,唐亚东,万彪,等.颗粒尺寸对纳米氧化物环境行为的影响[J].环境科学,2018,39(6):2982-2990.

    TANG Y P, TANG Y D, WAN B, et al. Impact of size on environmental behavior of metal oxide nanoparticles[J]. Environmental Science, 2018, 39(6):2982-2990(in Chinese).

    [50] WANG Z, ZHANG L, ZHAO J, et al. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter[J]. Environmental Science:Nano, 2016, 3(2):240-255.
    [51] 刘思谦,刘洋,赵婧,等.溶解性有机质作用下金属纳米颗粒的聚集和溶解[J]. 环境化学,2018,37(7):1638-1646.

    LIU S Q, LIU Y, ZHAO J, et al. Aggregation and dissolution of metal nanoparticles in the presence of dissolved organic matters[J]. Environmental Chemistry, 2018, 37(7):1638-1646(in Chinese).

    [52] JIANG C, AIKEN G R, HSU-KIM H. Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles[J]. Environmental Science & Technology, 2015, 49(19):11476-11484.
    [53] PEIJNENBURG W J G M, BAALOUSHA M, CHEN J, et al. A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(19):2084-2134.
    [54] LIU Z, WANG C, HOU J, et al. Aggregation, sedimentation, and dissolution of CuO and ZnO nanoparticles in five waters[J]. Environmental Science and Pollution Research, 2018, 25(31):31240-31249.
    [55] BAKER T J, TYLER C R AND GALLOWAY T S. Impacts of metal and metal oxide nanoparticles on marine organisms[J]. Environmental Pollution, 2014, 186:257-271.
    [56] NOVENTA S, ROWE D AND GALLOWAY T. Mitigating effect of organic matter on the in vivo toxicity of metal oxide nanoparticles in the marine environment[J]. Environmental Science:Nano, 2018, 5(7):1764-1677.
    [57] RIPPNER D A, GREEN P G, YOUNG T M, et al. Dissolved organic matter reduces CuO nanoparticle toxicity to duckweed in simulated natural systems[J]. Environmental Pollution, 2018, 234:692-698.
    [58] MARKUS A A, PARSONS J R, ROEX E W, et al. Modeling aggregation and sedimentation of nanoparticles in the aquatic environment[J]. Science of the Total Environment, 2015, 506-507:323-329.
    [59] REN M, HORN H, FRIMMEL F H. Aggregation behavior of TiO2 nanoparticles in municipal effluent:Influence of ionic strengthen and organic compounds[J]. Water Research, 2017, 123:678-686.
    [60] SOUSA V S, RIBAU T M. Removal of a mixture of metal nanoparticles from natural surface waters using traditional coagulation process[J]. Journal of Water Process Engineering, 2020, 36:101285.
    [61] ZOU X, SHI J, ZHANG H. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments:the roles of natural organic matter and light irradiation[J]. Journal of Hazardous Materials, 2015, 292:61-69.
    [62] ZHANG W, XIAO B AND FANG T. Chemical transformation of silver nanoparticles in aquatic environments:Mechanism, morphology and toxicity[J]. Chemosphere, 2018, 191:324-334.
    [63] YANG L, WANG W X. Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae[J]. Environmental Pollution, 2019, 249:116-124.
    [64] KIRKEGAARD P, HANSEN S F, RYGAARD M. Potential exposure and treatment efficiency of nanoparticles in water supplies based on wastewater reclamation[J]. Environmental Science:Nano, 2015, 2(2):191-202.
    [65] QUIK J T, VAN DE MEENT D, KOELMANS A A. Simplifying modeling of nanoparticle aggregation-sedimentation behavior in environmental systems:A theoretical analysis[J]. Water Research, 2014, 62:193-201.
    [66] AMDE M, LIU J F, TAN Z Q, et al. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review[J]. Environmental Pollution, 2017, 230:250-267.
    [67] LI Y, CHEN H, WANG F, et al. Environmental behavior and associated plant accumulation of silver nanoparticles in the presence of dissolved humic and fulvic acid[J]. Environmental Pollution, 2018, 243(Pt B):1334-1342.
    [68] TEGENAW A, SORIAL G A, SAHLE-DEMESSIE E, et al. Characterization of colloid-size copper-based pesticide and its potential ecological implications[J]. Environmental Pollution, 2019, 253:278-287.
    [69] KHAN R, INAM M, PARK D, et al. Taguchi orthogonal array dataset for the effect of water chemistry on aggregation of ZnO nanoparticles[J]. Data, 2018, 3(2):21.
    [70] PENG Y H, TSAI Y C, HSIUNG C E, et al. Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples[J]. Journal of Hazardous Materials, 2017, 322:348-356.
    [71] ADAM N, LEROUX F, KNAPEN D, et al. The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios[J]. Water Research, 2015, 68:249-261.
    [72] ARENAS-LAGO D, MONIKH F A, VIJVER M G, et al. Dissolution and aggregation kinetics of zero valent copper nanoparticles in (simulated) natural surface waters:Simultaneous effects of pH, NOM and ionic strength[J]. Chemosphere, 2019, 226:841-850.
    [73] TEGENAW A, SORIAL G A, SAHLE-DEMESSIE E, et al. Role of water chemistry on stability, aggregation, and dissolution of uncoated and carbon-coated copper nanoparticles[J]. Environmental Research, 2020, 187:109700.
    [74] WANG X, SUN T, ZHU H, et al. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles[J]. Journal of Environmental Management, 2020, 267:110656.
    [75] PARSAI T, KUMAR A. Understanding effect of solution chemistry on heteroaggregation of zinc oxide and copper oxide nanoparticles[J]. Chemosphere, 2019, 235:457-469.
    [76] ZHENG X, LI Y, CHEN D, et al. Study on analysis and sedimentation of alumina nanoparticles[J]. International Journal of Environmental Research and Public Health, 2019, 16(3):510.
    [77] 陈旭.巯基丙酸修饰水溶性量子点胶体稳定性及毒性研究[D]. 北京:北京林业大学,2017. CHEN X. The colloidal stability and toxicity of water-soluble quantum dot modified with 3-mercaptopropionic acid[D]. Beijing:Beijing Forestry University, 2017(in Chinese).
    [78] FRENCH R A, JACOBSON A R, KIM B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles[J]. Environmental Science & Technology, 2009, 43(5):1354-1359.
    [79] SINGH A V, LAUX P, LUCH A, et al. Review of emerging concepts in nanotoxicology:opportunities and challenges for safer nanomaterial design[J]. Toxicology Mechanisms and Methods, 2019, 29(5):378-387.
    [80] 何莹,刘洋,陈治廷,等.溶解性有机质的表面吸附行为及其对金属基纳米颗粒环境行为的影响[J]. 环境化学,2019, 38(8):1757-1767.

    HE Y, LIU Y, CHEN Z T, et al. Surface adsorption of dissolved organic matters and their effects on environmental behaviors of metal-based nanoparticles[J]. Environmental Chemistry, 2019, 38(8):1757-1767(in Chinese).

    [81] CHANG H H, CHENG T J, HUANG C P, et al. Characterization of titanium dioxide nanoparticle removal in simulated drinking water treatment processes[J]. Science of the Total Environment, 2017, 601-602:886-894.
    [82] ZOU X, LI P H, LOU J, et al. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters:Effects of dissolved oxygen[J]. Environmental Pollution, 2017, 230:674-682.
    [83] LIU H, LAI W, LIU X, et al. Exposure to copper oxide nanoparticles triggers oxidative stress and endoplasmic reticulum (ER)-stress induced toxicology and apoptosis in male rat liver and BRL-3A cell[J]. Journal of Hazardous Materials, 2020, 401:123349.
    [84] XIANG Q Q, WANG D, ZHANG J L, et al. Effect of silver nanoparticles on gill membranes of common carp:Modification of fatty acid profile, lipid peroxidation and membrane fluidity[J]. Environmental Pollution, 2020, 256:113504.
    [85] VALE G, MEHENNAOUI K, CAMBIER S, et al. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms:A critical overview[J]. Aquatic Toxicology, 2016, 170:162-174.
    [86] ZHANG B, LIU N, LIU Q S, et al. Silver nanoparticles induce size-dependent and particle-specific neurotoxicity to primary cultures of rat cerebral cortical neurons[J]. Ecotoxicology and Environmental Safety, 2020, 198:110674.
    [87] HASHEM M M, ABO-EL-SOOUD K, ABD-ELHAKIM Y M, et al. The long-term oral exposure to titanium dioxide impaired immune functions and triggered cytotoxic and genotoxic impacts in rats[J]. Journal of Trace Elements in Medicine and Biology, 2020, 60:126473.
    [88] 王娟,王妹梅,王晶晶,等.线粒体在纳米毒性效应中的作用及其机制研究进展[J]. 应用与环境生物学报,2015,21(4):579-589.

    WANG J, WANG M M, WANG J J, et al. Review on the role of mitochondria in nano-toxicology[J]. Chinese Journal of Applied & Environmental Biology, 2015, 21(4):579-589(in Chinese).

    [89] HU B, YIN N, YANG R, et al. Silver nanoparticles (AgNPs) and AgNO3 perturb the specification of human hepatocyte-like cells and cardiomyocytes[J]. Science of the Total Environment, 2020, 725:138433.
    [90] MIAO L, WANG P, HOU J, et al. Chronic exposure to CuO nanoparticles induced community structure shift and a delay inhibition of microbial functions in multi-species biofilms[J]. Journal of Cleaner Production, 2020, 262:121353.
    [91] DU J, ZHANG Y, YIN Y, et al. Do environmental concentrations of zinc oxide nanoparticle pose ecotoxicological risk to aquatic fungi associated with leaf litter decomposition[J]. Water Research, 2020, 178:115840.
    [92] ISODA K, TANAKA A, FUZIMORI C, et al. Toxicity of gold nanoparticles in mice due to nanoparticle/drug interaction induces acute kidney damage[J]. Nanoscale Research Letters, 2020, 15(1):141.
    [93] COSTA P M AND FADEEL B. Emerging systems biology approaches in nanotoxicology:Towards a mechanism-based understanding of nanomaterial hazard and risk[J]. Toxicology and Applied Pharmacology, 2016, 299:101-111.
    [94] XIAO Y L, PEIJNENBURG W J G M, CHEN G C, et al. Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions[J]. Science of the Total Environment, 2016, 563-564:81-88.
    [95] 叶茵茵,戚菁,王洪涛,等.水中纳米颗粒的稳定性及其去除研究进展[J]. 水处理技术,2012,38(12):6-11.

    YE YY, QI J, WANG H T, et al. Stability and removal of nanoparticles in aqueous system[J]. Technology of Water Treatment, 2012, 38(12):6-11(in Chinese).

    [96] 龚小娟.水体中TiO2纳米颗粒的分散稳定性与常规工艺去除效果研究[D]. 哈尔滨:哈尔滨工业大学,2013. GONG X J. The dispersion stability of TiO2 nanoparticles in water and removal effect by conventional process[D]. Harbin Institute of Technology, 2013(in Chinese).
    [97] ZHANG L, MAO J, ZHAO Q, et al. Effect of AlCl3 concentration on nanoparticle removal by coagulation[J]. Journal of Environmental Sciences, 2015, 38:103-109.
    [98] DONOVAN A R, ADAMS C D, MA Y F, et al. Fate of nanoparticles during alum and ferric coagulation monitored using single particle ICP-MS[J]. Chemosphere, 2018, 195:531-541.
    [99] SUN H, JIAO R, XU H, et al. The influence of particle size and concentration combined with pH on coagulation mechanisms[J]. Journal of Environmental Sciences, 2019, 82:39-46.
    [100] SUN J, GAO B, ZHAO S, et al. Simultaneous removal of nano-ZnO and Zn2+ based on transportation character of nano-ZnO by coagulation:Enteromorpha polysaccharide compound polyaluminum chloride[J]. Environmental Science and Pollution Research, 2017, 24(6):5179-5188.
    [101] KHAN R, INAM M A, PARK D R, et al. The Removal of CuO nanoparticles from water by conventional treatment C/F/S:The effect of pH and natural organic matter[J]. Molecules, 2019, 24:914.
    [102] SUN Q, LI Y, TANG T, et al. Removal of silver nanoparticles by coagulation processes[J]. Journal of Hazardous Materials, 2013, 261:414-420.
    [103] WALDEN C, ZHANG W. Biofilms versus activated sludge:Considerations in metal and metal oxide nanoparticle removal from wastewater[J]. Environmental Science & Technology, 2016, 50(16):8417-8431.
    [104] WESTERHOFF P K, KISER M A, HRISTOVSKI K. Nanomaterial removal and transformation during biological wastewater treatment[J]. Environmental Engineering Science, 2013, 30(3):109-117.
    [105] WESTERHOFF P, SONG G, HRISTOVSKI K, et al. Occurrence and removal of titanium at full scale wastewater treatment plants:implications for TiO2 nanomaterials[J]. Journal of Environmental Monitoring, 2011, 13(5):1195-1203.
    [106] LI L, HARTMANN G, DOEBLINGER M, et al. Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany[J]. Environmental Science & Technology, 2013, 47(13):7317- 7323.
    [107] KONSOWA A H, ELOFFY M G, IBRAHIM W A, et al. Removal of copper oxide nanoparticles from aquatic mediums by coagulation-ultrafiltration membrane hybrid continuous system[J]. Desalination and Water Treatment, 2019, 171:78-92.
    [108] WANG Y, XUE N, CHU Y, et al. CuO nanoparticle-humic acid (CuONP-HA) composite contaminant removal by coagulation/ultrafiltration process:The application of sodium alginate as coagulant aid[J]. Desalination, 2015, 367:265-271.
    [109] CERVANTES-AVILES P, HUANG Y, KELLER A A. Incidence and persistence of silver nanoparticles throughout the wastewater treatment process[J]. Water Research, 2019, 156:188-198.
    [110] VAN KOETSEM F, VERSTRAETE S, WALLAERT E, et al. Use of filtration techniques to study environmental fate of engineered metallic nanoparticles:Factors affecting filter performance[J]. Journal of Hazardous Materials, 2017, 322:105-117.
    [111] 刘振中,邓慧萍,陈战利.纳米颗粒的危害及在水体中的去除研究进展[J]. 安全与环境学报,2015,15(4):272-277.

    LIU Z Z, ZHENG H P, CHEN Z L. Hazard and removal of nanoparticles in aqueous system[J]. Journal of Safety and Environment, 2015, 15(4):272-277(in Chinese).

    [112] KRAHNSTöVER T, HOCHSTRAT R, WINTGENS T, et al. Comparison of methods to assess the integrity and separation efficiency of ultrafiltration membranes in wastewater reclamation processes[J]. Journal of Water Process Engineering, 2019, 30:100646.
  • 加载中
计量
  • 文章访问数:  4435
  • HTML全文浏览数:  4435
  • PDF下载数:  162
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-13

水体中金属(氧化物)纳米颗粒的环境行为与污染控制研究进展

    通讯作者: 程和发, E-mail: hefac@pku.edu.cn
  • 北京大学城市与环境学院, 地表过程与模拟教育部重点实验室, 北京, 100871
基金项目:

国家自然科学基金(41725015,41673089)资助.

摘要: 金属(氧化物)纳米材料在生产和使用过程中,可以通过各种途径进入到水环境中,对水生生物、生态环境和人体健康产生威胁.理解纳米颗粒在水体中的环境行为,对于评估纳米材料的归趋及其对环境和人体的健康风险至关重要.本文概述了金属(氧化物)纳米颗粒的性质、来源和毒性危害,汇总了表征纳米颗粒浓度、粒径及形貌的分析方法与技术,分析了它们在水环境中的环境行为以及影响其稳定性的主要环境因素,并总结了水体中金属(氧化物)纳米颗粒的去除方法和效果的最新研究进展.随着金属(氧化物)纳米材料的广泛应用,未来有必要加强对自然水体中纳米颗粒环境行为的研究,并系统开展纳米颗粒健康风险评估工作,为预测纳米材料进入水环境后的归趋和风险提供科学依据.

English Abstract

参考文献 (112)

目录

/

返回文章
返回