纳米颗粒与生物来源有机磷在水环境中的行为研究
Study on the behavior of nanoparticles and biologically-derived organic phosphates in the water environment
-
摘要: 随着纳米技术产业的快速发展,各种纳米颗粒(NPs)大规模生产,这不可避免地增加了NPs释放到环境、暴露于生态系统的可能性.有机磷是废水中磷的主要形式之一,是生物有效磷池和水体富营养化的重要组成部分.本文综述了近几年来NPs与生物来源有机磷在水环境中的反应机制、微观结构等方面的研究进展.文中按NPs的分类分别总结了NPs对常见的生物来源有机磷的吸附-解吸,溶解-沉淀等反应特性和微观机制.在水环境中,NPs因其物化特性受水化学条件(pH、天然有机质、温度)等影响,进而影响与有机磷的反应,从而表现出相应不同的环境效应.本文也对此方面的研究进行了讨论和总结.最后分析了目前纳米颗粒与有机磷在水环境研究中的瓶颈问题,并展望了未来需要开展的研究.Abstract: The rapid development of the nanotechnology sector results in the large-scale production of nanoparticles (NPs). This inevitably raises the possibility of releasing NPs to the environment and the ecosystem. Organic phosphorus is one of the main forms of phosphorus in wastewater, and a key contributor to biologically available phosphorus pools and eutrophication of water bodies. This paper reviewed the research progress in recent years in reaction mechanism and microstructure of NPs and biologically-derived organic phosphorus in the water environment. Based on the classification of NPs, this paper summarized the reaction characteristics such as adsorption-desorption, and dissolution-precipitation of NPs on biologically-derived organic phosphorus, as well as the micro-mechanism. In the water environment, NPs are affected by water chemical conditions (pH, natural organic matter, temperature) due to physicochemical properties. As a result, the reactions between NPs with organic phosphorus vary and exhibit different environmental behavior. This paper discussed and summarized the researches on NPs and organic phosphorus in the aquatic environment, analyzed the bottleneck problem and explored the further research to be carried out as well.
-
Key words:
- nanoparticels /
- organic phosphorus /
- adsorption /
- water environment
-
[1] NOWACK B, BUCHELI T D. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150(1):5-22. [2] CHENG P, WEN Z, GAO H P, et al. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments[J]. Nanomaterials, 2017, 7(1):21. [3] BUNDSCHUH M, FILSER J, LüDERWALD S, et al. Nanoparticles in the environment:where do we come from, where do we go to?[J]. Environmental Sciences Europe, 2018, 30(1):6. [4] RAJPUT V, MINKINA T, BEHAL A, et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms:A review[J]. Environmental Nanotechnology, Monitoring and Management, 2018, 9:76-84. [5] VANCE M E, TODD K, VEJERANO E P, et al. Nanotechnology in the real world:Redeveloping the nanomaterial consumer products inventory[J]. Beilstein Journal of Nanotechnology, 2015, 6:1769-1780. [6] 梁文, 何维, 李满林, 等. 金属氧化物纳米颗粒对磷的吸附及回收潜力[J]. 中国环境科学, 2017, 37(7):2557-2565. LIANG W, HE W, LI M L, et al. Phosphate adsorption from solution by metal oxide nanoparticles and the potential on phosphate capture[J]. China Environmental Science, 2017, 37(7):2557-2565(in Chinese).
[7] KELLER A, MCFERRAN S, LAZAREVA A, et al. Global life cycle releases of engineered nanomaterials[J]. Journal of Nanoparticle Research, 2013, 15(6):1692. [8] HOCHELLA M F, MOGK D W, RANVILLE J, et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system[J]. Science, 2019, 363(6434):1414. [9] ISWARYA V, PALANIVEL A, CHANDRASEKARAN N, et al. Toxic effect of different types of titanium dioxide nanoparticles on Ceriodaphnia dubia in a freshwater system[J]. Environmental Science and Pollution Research, 2019, 26(12):11998-12031. [10] MAURER-JONES M A, GUNSOLUS I L, MURPHY C J, et al. Toxicity of engineered nanoparticles in the environment[J]. Analytical Chemistry, 2013, 85(6):3036-3049. [11] 冯伟莹, 朱元荣, 吴丰昌, 等. 31P-NMR分析湖泊植物和藻类有机磷方法优化及形态研究[J]. 中国环境科学, 2016, 36(2):562-568. FENG W Y, ZHU Y R, WU F C, et al. Optimization of extraction and parameters for 31P-NMR analysis of organic phosphorus extracted from aquatic plants and algae[J]. China Environmental Science, 2016, 36(2):562-568(in Chinese).
[12] DYHRMAN S T, CHAPPELL P D, HALEY S T, et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium[J]. Nature, 2006, 439(7072):68-71. [13] PU X, CHENG H, TYSKLIND M, et al. Occurrence of water phosphorus at the water-sediment interface of a freshwater shallow lake:Indications of lake chemistry[J]. Ecological Indicators, 2017, 81(10):443-452. [14] JØRGENSEN C, JENSEN H S, ANDERSEN F, et al. Occurrence of orthophosphate monoesters in lake sediments:Significance of myo- and scyllo-inositol hexakisphosphate[J]. Journal of Environmental Monitoring, 2011, 13(8):2328-2334. [15] 吉蓉. 土壤解磷微生物及其解磷机制综述[J]. 甘肃农业科技, 2013, 45(8):42-44. JI R. Research summary on phosphate dissolution of phosphate solubilizing microorganisms[J]. Gansu Agricultural Science and Technology, 2013, 45(8):42-44(in Chinese).
[16] 李晶, 胡霞林, 陈启晴, 等. 纳米材料对水生生物的生态毒理效应研究进展[J]. 环境化学, 2011, 30(12):1993-2002. LI J, HU X L, CHEN Q Q, et al. Ecotoxicology of nanomaterials on aquatic organisms[J].Environmental Chemistry, 2011, 30(12):1993-2002(in Chinese).
[17] YAN Y, LIU F, LI W, et al. Sorption and desorption characteristics of organic phosphates of different structures on aluminum (oxyhydr)oxides[J]. European Journal of Soil Science, 2014, 65(2):308-317. [18] RUTTENBERG K C, SULAK D J. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater[J]. Geochimica et Cosmochimica Acta, 2011, 75(15):4095-4112. [19] LV J, ZHANG S, LUO L, et al. Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate[J]. Environmental Science & Technology, 2012, 46(13):7215-7221. [20] STAROń P, PSZCZółKA K, CHWASTOWSKI J, et al. Sorption behavior of Arachis hypogaea shells against Ag+ ions and assessment of antimicrobial properties of the product[J]. Environmental Science and Pollution Research, 2020, 27(16):19530-19542. [21] ILINA S M, OLLIVIER P, SLOMBERG D, et al. Investigations into titanium dioxide nanoparticle and pesticide interactions in aqueous environments[J]. Environmental Science Nano, 2017, 4:2055-2065. [22] WAN B, YAN Y, LIU F, et al. Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension:A comparative study with orthophosphate[J]. Science of The Total Environment, 2016, 544:134-142. [23] RAJPUT V, MINKINA T, SUSHKOVA S, et al. ZnO and CuO nanoparticles:A threat to soil organisms, plants, and human health[J]. Environmental Geochemistry and Health, 2020, 42(1):147-158. [24] MARCELINO P, MOREIRA M, LACERDA T, et al. Zinc and silver nanoparticles:Properties, applications and impact to the aquatic environment[J]. Nanomaterials:Ecotoxicity, Safety, and Public Perception, 2018,9:167-190. [25] FENG X, YAN Y, WAN B, et al. Enhanced dissolution and transformation of ZnO nanoparticles:The role of inositol hexakisphosphate[J]. Environmental Science & Technology, 2016, 50(11):5651-5660. [26] WAN B, YAN Y, FAN L, et al. Effects of myo -inositol hexakisphosphate and orthophosphate adsorption on aggregation of CeO2 nanoparticles:Roles of pH and surface coverage[J]. Environmental Chemistry, 2015, 13(1):34-42. [27] YAN Y, KOOPAL K L, LI W et al. Size-dependent sorption of myo-inositol hexakisphosphate and orthophosphate on nano-γ-Al2O3[J]. Journal of Colloid and Interface Science, 2015, 451:85-92. [28] WU J, PRAJWAL P, SUN M, et al. Mechanisms and pathways of phytate degradation:Evidence from oxygen isotope ratios of phosphate, HPLC, and phosphorus-31 NMR spectroscopy[J]. Soil Science Society of America Journal, 2015, 79(6):1615-1628. [29] XU C Y, LI J Y, XU R K, et al. Sorption of organic phosphates and its effects on aggregation of hematite nanoparticles in monovalent and bivalent solutions[J]. Environmental Science and Pollution Research, 2017, 24(8):7197-7207. [30] OGNALAGA M, FROSSARD E, THOMAS F. Glucose-1-phosphate and myo-inositol hexaphosphate adsorption mechanisms on goethite[J]. Soil Science Society of America Journal, 1994, 58(2):332. [31] CELI L, PRESTA M, AJMORE-MARSAN F, et al. Effects of pH and electrolytes on inositol hexaphosphate interaction with goethite[J]. Soil Science Society of America Journal, 2001, 65(3):753-760. [32] JOHNSON B B, QUILL E, ANGOVE M J. An investigation of the mode of sorption of inositol hexaphosphate to goethite[J]. Journal of Colloid and Interface Science, 2012, 367(1):436-442. [33] MARTIN M, CELI L, BARBERIS E. Desorption and plant availability of myo-inositol hexaphosphate adsorbed on goethite[J]. Soil Science, 2004, 169(2):115-124. [34] YAN Y, KOOPAL L, LIU F, et al. Desorption of myo-inositol hexakisphosphate and phosphate from goethite by different reagents[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(6):878-887. [35] YAN Y, WAN B, FENG X, et al. Adsorption-desorption of myo-Inositol hexakisphosphate on hematite[J]. Soil Science, 2014, 179(10/11):476-485. [36] 谭凌艳, 杨柳燕, 缪爱军. 人工纳米颗粒对重金属在水生生物中的富集与毒性研究进展[J]. 南京大学学报:自然科学版, 2016, 52(4):582-589. TAN L Y, YANG L Y, LIAO A J. Engineered nanoparticle effects on heavy metal bioaccumulation and toxicity in aquatic ecosystem[J]. Journal of Nanjing University (Natural Sciences), 2016, 52(4):582-589(in Chinese).
[37] PETTIBONE J M, CWIERTNY D M, SCHERER M, et al. Adsorption of organic acids on TiO2 nanoparticles:Effects of pH, nanoparticle size, and nanoparticle aggregation[J]. Langmuir the Acs Journal of Surfaces and Colloids, 2008, 24(13):6659-6667. [38] MADDEN A S, HOCHELLA M F, LUXTON T P. Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption[J]. Geochimica et Cosmochimica Acta, 2006, 70(16):4095-4104. [39] ZENG H, SINGH A, BASAK S, et al. Nanoscale size effects on Uranium(Ⅵ) adsorption to hematite[J]. Environmental Science & Technology, 2009, 43(5):1373-1378. [40] RATHNAYAKE S, UNRINE J M, JUDY J, et al. Multitechnique investigation of the pH dependence of phosphate induced transformations of ZnO nanoparticles[J]. Environmental Science & Technology, 2014, 48(9):4757-4764. [41] LI H, WAN B, YAN Y, et al. Adsorption of glycerophosphate on goethite (α-FeOOH):A macroscopic and infrared spectroscopic study[J]. Journal of Plant Nutrition & Soil Science, 2018, 181(3):557-565. [42] LV C, YAN D, HE J, et al. Environmental geochemistry significance of organic phosphorus:An insight from its adsorption on iron oxides[J]. Applied Geochemistry, 2017, 84:52-60. [43] SÄRKKÄ H, VEPSÄLÄINEN M, SILLANPÄÄ M. Natural organic matter (NOM) removal by electrochemical methods-A review[J]. Journal of Electroanalytical Chemistry, 2015, 755:100-108. [44] BHATNAGAR A, SILLANPÄÄ M. Removal of natural organic matter (NOM) and its constituents from water by adsorption-A review[J]. Chemosphere, 2017, 166:497-510. [45] 程琼, 庄婉娥, 杨丽阳. 水生系统中溶解态有机质的激发效应研究进展[J]. 环境化学, 2018, 37(1):10-18. CHENG Q, ZHUANG W E, YANG L Y. Priming effect of dissolved organic matter in aquatic ecosystems:A review[J]. Environmental Chemistry, 2018, 37(1):10-18(in Chinese).
[46] ANTELO J, ARCE F, AVENA M, et al. Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate[J]. Geoderma, 2007, 138(1/2):1-19. [47] 谢发之, 李振宇, 李海滨, 等. 水合氧化铁负载D418树脂对磷的吸附性能研究[J]. 环境污染与防治, 2019, 41(2):175-179. [48] RUYTER-HOOLEY M, MORTON D W, JOHNSON B B, et al. The effect of humic acid on the sorption and desorption of myo-inositol hexaphosphate to gibbsite and kaolinite[J]. European Journal of Soil Science, 2016, 67(3):285-293. [49] MEZENNER N Y, BENSMAILI A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste[J]. Chemical Engineering Journal, 2009, 147(2/3):87-96. [50] PAN B, WU J, PAN B, et al. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents[J]. Water Research, 2009, 43(17):4421-4429. [51] YOON S Y, LEE C G,PARK G A, et al. Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles[J]. Chemical Engineering Journal, 2014, 236, 341-347. [52] GEORGE T, GILES C, MENEZES-BLACKBURN D, et al. Organic phosphorus in the terrestrial environment:A perspective on the state of the art and future priorities[J]. Plant and Soil, 2017, 427:191-208. [53] HOECKE K V, SCHAMPHELAERE K A C D, MEEREN P V D, et al. Aggregation and ecotoxicity of CeO nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength[J]. Environmental Pollution, 2011, 159(4):970-976. [54] BIAN S W, MUDUNKOTUWA I A, RUPASINGHE T, et al. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments:Influence of pH, ionic strength, size, and adsorption of humic acid[J]. Langmuir, 2011, 27(10):6059-6068. [55] VICENTE I D, JENSEN H S, ANDERSEN F Ø. Factors affecting phosphate adsorption to aluminum in lake water:Implications for lake restoration[J]. Science of the Total Environment, 2008, 389(1):29-36. [56] XU T, CATALANO J. Effects of ionic strength on arsenate adsorption at aluminum hydroxide-water interfaces[J]. Soil Systems, 2018, 2(1):314-327.
计量
- 文章访问数: 2139
- HTML全文浏览数: 2139
- PDF下载数: 45
- 施引文献: 0