-
降水不仅对地球水循环起到极其重要的作用,也是我们所熟知的陆地水资源的重要来源[1]。在水体中表现极为敏感的氢氧同位素记载了水循环过程演化的历史信息[2]。大气降水中的氢氧同位素是探究古气候最好的示踪元素,且随温度、降水量、经度和纬度等各种因子的变化而变化[3]。然而对于局地的大气降水中氢氧稳定同位素则主要受水汽来源[4-6]、气团运移[7-8]的过程和该区域气候条件[9,10]的影响。因此,探索大气降水中稳定氢氧同位素的分布特征及其水汽来源的信息对研究两地区水文循环过程、深入了解其地下水起源和形成具有极其重要的意义[11]。起初,GNIP站点的建立对于同位素的研究奠定了很好的基础,Liu等[12]对于中国降水稳定同位素进行了更深入的研究,并做了较为系统的总结。韩婷婷等[13]、孟鸿飞等[14]、Huang等[15]的研究对小区域的水汽来源有了更加明确的认识。随着一些学者开始在全国范围内进行采样,对于区域降水同位素的研究也逐渐成为热点,王涛等[16]根据GNIP所提供的郑州地区降水同位素资料,对其大气降水氢氧同位素时间分布特征及其影响因素进行了分析,但其对水汽来源的分析不够透彻。蔡健榕等[17]、孙晓双等[18]以及许涛等[19]都在台风登陆期间对福州地区降水同位素进行短时间尺度的分析,但并没有对福州地区多年大气降水同位素特征及水汽来源进行分析。很多学者在对我国地区进行大范围的探寻氢氧同位素特征的规律时,却忽略一些受特殊地理位置及复杂水汽来源的地区,以致影响对大范围的氢氧同位素特征规律的认识;且我国对受季风影响的内陆地区和沿海地区降水同位素特征及水汽来源的比较分析的研究也很少。
本研究旨在通过探讨受特殊地理位置因素影响的郑州与福州两地区降水同位素的特征及水汽来源的联系与区别,从而反映降水稳定同位素环境效应的地域特征,为学者研究我国大区域降水同位素的时空分布特征提供很好的理论支撑,并且有助于对两地区水循环演化的历史信息有更深刻的理解。
郑州与福州降水同位素特征及水汽来源对比分析
Comparative analysis of precipitation isotopes and water vaporsources in Zhengzhou and Fuzhou
-
摘要: 研究基于郑州与福州两地区GNIP(1985—1992年)大气降水同位素资料,对其大气降水同位素的季节变化以及环境因子进行比较分析。结果表明,郑州地区较福州地区季节变化明显,且两地区与温度和降水量均呈现负相关关系;根据两地区大气降水线方程得出,福州地区大气降水线方程斜率和截距大于郑州地区;两地区的d-excess值夏季高,冬季低;福州地区受台风影响,两地区降水量差别较大导致降水量在决定两地区月加权平均d-excess值时,福州地区整体比郑州地区偏大;采用MeteoInfo软件,并利用由美国国家大气研究中心所提供的气象资料,对两地区气团轨迹进行后向模拟,比较分析得出:郑州地区在夏季大部分水汽来自南海,春季、秋季和冬季的水汽均来自北方大陆;福州地区在夏季的水汽全部水汽来自低纬度的海洋,而春季、秋季和冬季的水汽仅有少部份来自北方大陆。Abstract: Based on the GNIP (1985—1992) global atmospheric precipitation isotope data in Zhengzhou and Fuzhou, the study compares and analyzes the seasonal variation of atmospheric precipitation isotopes and environmental factors, the results show that Zhengzhou region has more obvious seasonal changes than Fuzhou region, and both regions have negative correlations with temperature and precipitation; At the same time, according to local meteoric water line in the two regions, the slope and intercept of the local meteoric water line in Fuzhou are larger than those in Zhengzhou. The d-excess values of the two regions are high in summer and low in winter. The Fuzhou region is affected by the typhoon, and the difference in precipitation between the two regions is large. When determining the monthly weighted average d-excess value of the two regions, Fuzhou is generally larger than Zhengzhou. Using MeteoInfo software and combining global reanalysis data provided by the National Environmental Forecasting Center/National Atmospheric Research Center to track the water vapor sources in the two regions, and the comparative analysis shows that Zhengzhou region has water vapor from the low-latitude ocean in summer, and water vapor from northern continent in spring, autumn, and winter. In Fuzhou, all water vapor in summer comes from low-latitude oceans, while only a small part of water vapor comes from the northern continent in spring, autumn and winter.
-
Key words:
- atmospheric precipitation /
- Zhengzhou /
- Fuzhou /
- isotope /
- water vapor source
-
-
[1] 周慧, 章新平, 姚天次, 等. 我国大气降水中δ18O变化的多气象因子分析及分区研究 [J]. 环境科学学报, 2018, 38(6): 2242-2252. ZHOU H, ZHANG X P, YAO T C, et al. Multi-meteorological analysis and zoning study of δ18O changes in atmospheric precipitation in China [J]. Journal of Environmental Science, 2018, 38(6): 2242-2252(in Chinese).
[2] 柳鉴容, 宋献方, 袁国富, 等. 西北地区大气降水δ18O的特征及水汽来源 [J]. 地理学报, 2008, 63(1): 12-22. doi: 10.3321/j.issn:0375-5444.2008.01.002 LIU J R, SONG X F, YUAN G F, et al. Characteristics of atmospheric precipitation δ18O and water vapor source in Northwest China [J]. Acta Geographica Sinica, 2008, 63(1): 12-22(in Chinese). doi: 10.3321/j.issn:0375-5444.2008.01.002
[3] DANSGAARD WW. Stable isotopes in precipitation [J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993 [4] 田立德, 姚檀栋, 余武生, 等. 青藏高原水汽输送与冰芯中稳定同位素记录 [J]. 第四纪研究, 2006, 26(2): 145-152. doi: 10.3321/j.issn:1001-7410.2006.02.001 TIAN L D, YAO T D, YU W S, et al. Water vapor transport on the Tibetan Plateau and stable isotope records in ice cores [J]. Quaternary Research, 2006, 26(2): 145-152(in Chinese). doi: 10.3321/j.issn:1001-7410.2006.02.001
[5] 谭明, 南素兰. 中国季风区降水氧同位素年际变化的“环流效应”初探 [J]. 第四纪研究, 2010, 30(3): 620-622. doi: 10.3969/j.issn.1001-7410.2010.03.21 TAN M, NAN S L. A preliminary study on the "circulation effect" of the interannual variation of oxygen isotopes in precipitation in the monsoon region of China [J]. Quaternary Studies, 2010, 30(3): 620-622(in Chinese). doi: 10.3969/j.issn.1001-7410.2010.03.21
[6] 陶涛, 谭明, 段武辉. 最短时间尺度环流效应: 单场降水δ18O对复合水汽来源的示踪 [J]. 第四纪研究, 2013, 33(3): 615-617. doi: 10.3969/j.issn.1001-7410.2013.03.24 TAO T, TAN M, DUAN W H. Shortest time scale circulation effect: Single field precipitation δ18O tracer of composite water vapor source [J]. Quaternary Research, 2013, 33(3): 615-617(in Chinese). doi: 10.3969/j.issn.1001-7410.2013.03.24
[7] 王圣杰, 张明军. 新疆天山降水稳定同位素的时空特征与影响因素 [J]. 第四纪研究, 2017, 37(5): 1119-1130. doi: 10.11928/j.issn.1001-7410.2017.05.19 WANG S J, ZHANG M J. Temporal and spatial characteristics and influencing factors of stable isotope of precipitation in Tianshan Mountains, Xinjiang [J]. Quaternary Research, 2017, 37(5): 1119-1130(in Chinese). doi: 10.11928/j.issn.1001-7410.2017.05.19
[8] 靳晓刚, 张明军, 王圣杰, 等. 基于氢氧稳定同位素的黄土高原云下二次蒸发效应 [J]. 环境科学, 2015, 36(4): 1241-1248. JIN X G, ZHANG M J, WANG S J, et al. Second evaporation effect under the clouds on the Loess Plateau based on hydrogen and oxygen stable isotopes [J]. Environmental Science, 2015, 36(4): 1241-1248(in Chinese).
[9] 蔡忠银, 田立德. 季风区降水δ18O与云顶气压关系 [J]. 第四纪研究, 2015, 35(6): 1450-1457. doi: 10.11928/j.issn.1001-7410.2015.06.14 CAI Z Y, TIAN L D. Relationship between precipitation δ18O in monsoon area and cloud top pressure [J]. Quaternary Research, 2015, 35(6): 1450-1457(in Chinese). doi: 10.11928/j.issn.1001-7410.2015.06.14
[10] 赵华标, 徐柏青, 王宁练. 青藏高原冰芯稳定氧同位素记录的温度代用性研究 [J]. 第四纪研究, 2014, 34(6): 1215-1226. doi: 10.3969/j.issn.1001-7410.2014.06.10 ZHAO H B, XU B Q, WANG N L. Temperature Substitutability Study of Stable Oxygen Isotope Records of Ice Cores on the Tibetan Plateau [J]. Quaternary Research, 2014, 34(6): 1215-1226(in Chinese). doi: 10.3969/j.issn.1001-7410.2014.06.10
[11] 王兴, 李王成, 董亚萍, 等. 西安地区降水稳定同位素变化特征及影响因素 [J]. 人民黄河, 2020, 42(1): 77-81. doi: 10.3969/j.issn.1000-1379.2020.01.016 WANG X, LI W C, DONG Y P, et al. Characteristics and influencing factors of stable isotopic changes of precipitation in Xi’an area [J]. People’s Yellow River, 2020, 42(1): 77-81(in Chinese). doi: 10.3969/j.issn.1000-1379.2020.01.016
[12] LIU J R, SONG X F, YUAN G F, et al. Stable isotopes of summer monsoonal precipitation in southern China and the moisture sources evidence from δ18O signature [J]. Journal of Geographical Sciences, 2008, 18(2): 155-165. doi: 10.1007/s11442-008-0155-9 [13] 韩婷婷, 张明军, 王圣杰, 等. 兰州市两场典型降水事件稳定同位素特征及其水汽来源 [J]. 环境科学, 2020, 41(9): 3993-4002. HAN T T, ZHANG M J, WANG S J, et al. The stable isotope characteristics of two typical precipitation events in Lanzhou and the source of water vapor [J]. Environmental Science, 2020, 41(9): 3993-4002(in Chinese).
[14] 孟鸿飞, 张明军, 王圣杰, 等. 黑河中游夏季昼夜水汽同位素特征及水汽来源分析 [J]. 干旱区地理, 2020, 43(2): 360-370. MENG H F, ZHANG M J, WANG S J, et al. Analysis of day and night water vapor isotopic characteristics and water vapor sources in the middle reaches of the Heihe River in summer [J]. Arid Land Geography, 2020, 43(2): 360-370(in Chinese).
[15] HUANG W, CHANG S Q, XIE C L, et al. Moisture sources of extreme summer precipitation events in North Xinjiang and their relationship with atmospheric circulation [J]. Advances in Climate Change Research, 2017, 8(1): 12-17. doi: 10.1016/j.accre.2017.02.001 [16] 王涛, 徐丽娜, 刘笑. 郑州大气降水氧同位素变化及水汽来源分析[C]. 南京, 中国气象学会年会, 2013. WANG T, XU L N, LIU X. Analysis of oxygen isotope changes and water vapor sources in Zhengzhou atmospheric precipitation[C]. Nanjing, Chinese Meteorological Society Annual Meeting, 2013(in Chinese).
[17] 蔡健榕, 许涛, 姜修洋. 双台风“纳沙”“海棠”期间福州降水δ18O特征及影响因素 [J]. 亚热带资源与环境学报, 2019, 14(2): 34-40. doi: 10.3969/j.issn.1673-7105.2019.02.006 CAI J R, XU T, JIANG X Y. The δ18O characteristics and influencing factors of precipitation in Fuzhou during the double typhoon "Nasha" and "Begonia" [J]. Journal of Subtropical Resources and Environment, 2019, 14(2): 34-40(in Chinese). doi: 10.3969/j.issn.1673-7105.2019.02.006
[18] 孙晓双, 王晓艳, 翟水晶, 等. 台风“麦德姆”福州降水δ18O特征及水汽来源分析 [J]. 自然资源学报, 2016, 31(6): 1041-1050. doi: 10.11849/zrzyxb.20150753 SUN X S, WANG X Y, ZHAI S J, et al. Characteristics of precipitation δ18O in typhoon "Medum" Fuzhou and analysis of water vapor source [J]. Journal of Natural Resources, 2016, 31(6): 1041-1050(in Chinese). doi: 10.11849/zrzyxb.20150753
[19] 许涛, 蔡健榕, 孙晓双, 等. 台风“杜鹃”降水δ18O的云雨区效应初探 [J]. 自然资源学报, 2018, 33(12): 2238-2248. doi: 10.31497/zrzyxb.20171244 XU T, CAI J R, SUN X S, et al. Preliminary study on cloud and rain zone effect of typhoon rhododendron rainfall δ18O [J]. Journal of Natural Resources, 2018, 33(12): 2238-2248(in Chinese). doi: 10.31497/zrzyxb.20171244
[20] 裴志方, 文艳, 杨武年. 城市化下城市热环境与下垫面关系研究——以郑州市为例 [J]. 云南师范大学学报(自然科学版), 2019, 39(1): 66-71. PEI Z F, WEN Y, YANG W N. Research on the relationship between urban thermal environment and underlying surfaces under urbanization——Taking Zhengzhou as an example [J]. Journal of Yunnan Normal University (Natural Science Edition), 2019, 39(1): 66-71(in Chinese).
[21] 张丽, 胡娟萍, 李宝玉. 郑州市1951—2011年降水及气温的变化特征分析 [J]. 华北水利水电大学学报(自然科学版), 2014, 35(3): 19-23,48. ZHANG L, HU J P, LI B Y. Analysis of the characteristics of precipitation and temperature changes in Zhengzhou City from 1951 to 2011 [J]. Journal of North China University of Water Resources and Hydropower (Natural Science), 2014, 35(3): 19-23,48(in Chinese).
[22] 马双良, 黄腾跃, 王楠等. 郑州市降水过程对颗粒物湿沉降的影响 [J]. 干旱环境监测, 2018, 32(4): 170-175. doi: 10.3969/j.issn.1007-1504.2018.04.005 MA S L, HUANG T Y, WANG N, et al. Impact of precipitation process on wet deposition of particulate matter in Zhengzhou City [J]. Arid Environmental Monitoring, 2018, 32(4): 170-175(in Chinese). doi: 10.3969/j.issn.1007-1504.2018.04.005
[23] 范海兰, 胡喜生, 陈灿等. 福州市空气负离子空间变化特征 [J]. 福建林学院学报, 2008, 28(1): 27-30. doi: 10.3969/j.issn.1001-389X.2008.01.007 FAN H L, HU X S, CHEN C et al. Spatial variation characteristics of air anions in Fuzhou [J]. Journal of Fujian Forestry College, 2008, 28(1): 27-30(in Chinese). doi: 10.3969/j.issn.1001-389X.2008.01.007
[24] 王苏颖, 陈志强. 基于TM遥感影像的福州景观生态格局分析 [J]. 太原师范学院学报(自然科学版), 2006, 5(1): 111-114,131. WANG S Y, CHEN Z Q. Analysis of landscape ecological pattern in fuzhou based on TM remote sensing images [J]. Journal of Taiyuan Teachers College (Natural Science Edition), 2006, 5(1): 111-114,131(in Chinese).
[25] IAEA/WMO. Global network for isotopes in precipitation [EB/OL]. [2006-7-6]. http://isohis.iaea.org. [26] 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究 [J]. 科学通报, 1983, 1(13): 801-806. ZHENG S H, HOU F G, NI Y L. Hydrogen and oxygen stable isotopes of atmospheric precipitation in China [J]. Chinese Science Bulletin, 1983, 1(13): 801-806(in Chinese).
[27] CRAIG H. Isotopic variations in meteoric waters [J]. Science, 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702 [28] VAUGHAN J I. An evaluation of observed and simulated high-resolution records of stable isotopes in precipitation[D]. Melbourne: University of Melbourne, 2007. [29] 李广, 章新平, 张新主, 等. 云南腾冲地区大气降水中氢氧稳定同位素特征 [J]. 长江流域资源与环境, 2013, 22(11): 1458-1465. LI G, ZHANG X P, ZHANG X Z, et al. Stable isotope characteristics of hydrogen and oxygen in atmospheric precipitation in Tengchong, Yunnan [J]. Resources and Environment in the Yangtze River Basin, 2013, 22(11): 1458-1465(in Chinese).
[30] 高宗军, 于晨, 田禹, 等. 中国大陆大气降水线斜率分区及其水汽来源研究 [J]. 地下水, 2017, 39(6): 149-152,177. doi: 10.3969/j.issn.1004-1184.2017.06.054 GAO Z J, YU C, TIAN Y, et al. Research on the division of the slope of the atmospheric precipitation line in mainland China and the source of water vapor [J]. Groundwater, 2017, 39(6): 149-152,177(in Chinese). doi: 10.3969/j.issn.1004-1184.2017.06.054
[31] 张琳, 陈宗宇, 聂振龙, 等. 我国不同时间尺度的大气降水氧同位素与气温的相关性分析 [J]. 核技术, 2008, 31(9): 715-720. doi: 10.3321/j.issn:0253-3219.2008.09.017 ZHANG L, CHEN Z Y, NIE Z L, et al. Correlation analysis between atmospheric oxygen isotope and air temperature at different time scales in China [J]. Nuclear Techniques, 2008, 31(9): 715-720(in Chinese). doi: 10.3321/j.issn:0253-3219.2008.09.017
[32] 李广, 章新平, 许有鹏, 等. 滇南蒙自地区降水稳定同位素特征及其水汽来源 [J]. 环境科学, 2016, 37(4): 1313-1320. LI G, ZHANG X P, XU Y P, et al. Stable isotope characteristics of precipitation and its water vapor source in Mengzi area, southern Yunnan [J]. Environmental Science, 2016, 37(4): 1313-1320(in Chinese).
[33] 章新平, 姚檀栋. 全球降水中氧同位素比率的分布特点 [J]. 冰川冻土, 1994, 16(3): 202-210. ZHANG X P, YAO T D. Distribution characteristics of oxygen isotope ratio in global precipitation [J]. Glaciology and Geocryology, 1994, 16(3): 202-210(in Chinese).
[34] ZHANG X P, SHI Y F, YAO T D. Variational features of precipitation δ18O in Northeast Qinghai-Tibet Plateau [J]. Science in China(Series B), 1995, 38(7): 854-864. [35] 刘进达, 赵迎昌, 刘恩凯, 等. 中国大气降水稳定同位素时—空分布规律探讨 [J]. 勘察科学技术, 1997, 1(3): 34-39. LIU J D, ZHAO Y C, LIU E K, et al. Discussion on the temporal-spatial distribution of stable isotopes of atmospheric precipitation in China [J]. Investigation Science and Technology, 1997, 1(3): 34-39(in Chinese).
[36] 程中双, 张永波. 不同水汽源控制下的降水同位素分布特征 [J]. 勘察科学技术, 2015, 1(1): 25-31. doi: 10.3969/j.issn.1001-3946.2015.01.006 CHENG Z S, ZHANG Y B. Distribution characteristics of precipitation isotopes under the control of different water vapor sources [J]. Prospecting Science and Technology, 2015, 1(1): 25-31(in Chinese). doi: 10.3969/j.issn.1001-3946.2015.01.006
[37] 侯典炯, 秦翔, 吴锦奎, 等. 乌鲁木齐大气降水稳定同位素与水汽来源关系研究 [J]. 干旱区资源与环境, 2011, 25(10): 136-142. HOU D J, QIN X, WU J K, et al. Study on the relationship between stable isotope of atmospheric precipitation and water vapor source in Urumqi [J]. Journal of Arid Land Resources and Environment, 2011, 25(10): 136-142(in Chinese).
[38] JOUZEL J, MERILVAT L. Deuterium and oxygen 18 in precipitation: modeling of the isotope effects during snow formation [J]. Journal of Geophysical Research, 1984, 89(D7): 11749-11757. doi: 10.1029/JD089iD07p11749 [39] BRIMELOW C J, REUTER W G. Transport of atmospheric moisture during three extreme rainfall events over the Mackenzie River Basin [J]. Journal of Hydrometeorology, 2005, 6(4): 423-440. doi: 10.1175/JHM430.1 [40] 马京津, 于波, 高晓清等. 大尺度环流变化对华北地区夏季水汽输送的影响 [J]. 高原气象, 2008, 27(3): 517-523. MA J J, YU B, GAO X Q, et al. Impact of large-scale circulation changes on summer water vapor transport in North China [J]. Plateau Meteorology, 2008, 27(3): 517-523(in Chinese).