-
大气细颗粒物(PM2.5)对全球空气质量和人类健康都有重要的作用。碳组分是PM2.5的主要组成成分之一[1] ,主要包括有机碳(OC)和元素碳(EC)及少量的碳酸盐酸(CC),其中 CC 含量不超过总碳(TC)的5%,故不考虑[2-3]。一般认为EC为惰性污染物,主要来自燃料的不完全燃烧,由污染源直接排放,环境中的EC主要分为焦炭(Char-EC)和烟炱(Soot-EC) 2个部分 [4-5],Char-EC定义为燃料燃烧后固体残渣中的EC,Soot-EC定义为燃烧后气相挥发物质再凝结形成的EC。OC包括一次有机碳(POC)和二次有机碳(SOC)[6-8]。有研究表明,大气中85%的EC和82%的OC均富集于PM2.5中[9]。OC和EC对大气消光和人体健康等都产生重要影响[10-12]。其中EC具有石墨样的结构,是光吸收的主要贡献者[13];OC可以散射光,并与EC一起对云的性质产生影响,从而对辐射强迫产生影响[14],因此对碳组分的研究一直是国内外研究热点[15]。李立伟等[16]研究了京津冀区域PM2.5中碳组分污染特征,发现京津冀区域有显著的SOC生成。徐少才等[17]对青岛市PM2.5化学组分特征研究发现PM2.5中占比较高的是碳组分且存在SOC污染。张懿华等[18]对上海城区PM2.5中OC和EC进行了研究,发现生物质燃烧、燃煤排放以及道路尘是上海城区PM2.5中碳组分的主要来源。Ryou等[19]对韩国PM10和PM2.5的来源研究发现机动车和二次气溶胶是韩国PM2.5影响最大的来源。Park等[20]对北京、首尔和长崎PM2.5及其化学成分特征研究发现要在东亚地区实施有效的PM2.5减排计划,应同时考虑PM2.5的长距离输送来源和本地来源。
由于人类在沿海地区进行如海上运输、港口作业和建筑活动等频繁活动,许多关于PM2.5组成和来源的研究已在沿海城市进行[21]。天津不仅是华北地区的超大城市之一,也是重要的港口城市,近些年天津作为“京津冀一体化”大气污染联防联控的重要一环,大气污染状况一直是关注的热点[22];而位于长江三角洲入海口的上海既是中国南方特大商业和工业城市,也是世界上最大的港口之一[23]。青岛是东部沿海地区重要的度假旅游城市,虽然主城区的PM2.5颗粒物研究时间较早[24]。但总体而言,目前,对中国沿海地区的研究均只集中在其中某一区域(如京津冀、长三角和珠三角),或只是单纯的针对某一个城市的浓度、来源解析以及对人体健康影响等方面的研究[25-26],对北方和南方城市进行多点位同步观测研究十分有限[27-29],不能完全反映PM2.5中碳组分整体污染特征,对碳组分来源及形成机制的认识还不够充分。本次研究的3个典型沿海城市分别为北方的天津和青岛以及南方的上海,天津和青岛是我国北方重要的工业城市,近年来随着城市经济和交通运输快速发展,大气环境压力增大。上海是一个人口稠密且经济发达的超大型城市,其环境空气质量的变化与人们的生活密切相关,备受关注。
本研究于2018年12月5日—2019年1月30日,对中国典型沿海城市(天津、上海和青岛)3个站点PM2.5滤膜样品同步进行采集和分析,对比研究PM2.5中OC、EC的浓度水平及污染特征、结合SOC的污染特征,同时利用PCA、后向轨迹对碳组分的来源及传输路径进行分析。研究结果将有助于全面地了解中国典型沿海城市PM2.5中碳组分的演变特征,对大气污染防治工作提供参考依据。
中国典型沿海城市冬季PM2.5中碳组分的污染特征及来源解析
Pollution characteristics and sources analysis of carbon components in PM2.5 in winter at typical coastal cities of China
-
摘要: 为研究中国典型沿海城市冬季PM2.5中碳组分的污染特征及来源,于2018年12月5日—2019年1月30日分别在天津(TJ)、上海(SH)和青岛(QD)同步采集PM2.5样品。结果表明,天津、上海和青岛PM2.5的平均浓度分别为(116.96±66.93)、(31.21±25.62)、(74.93±54.60)μg·m−3,OC和EC的空间分布均为天津(18.69±7.95) μg·m−3和(4.98±2.08 )μg·m−3)>青岛(16.45±8.94 ) μg·m−3和(2.01±1.04) μg·m−3)>上海(7.28±3.11) μg·m−3和(1.05±1.25) μg·m−3)。3个站点的OC和EC均呈现较好的相关性,表明OC和EC具有相似的来源;OC/EC比值范围在2.37—7.53、5.47—46.41和4.77—13.36之间,证明各采样点均存在二次有机碳(SOC)的生成;采用最小R2法(MRS)估算SOC浓度,得到3个采样点SOC的平均质量浓度为(5.09±4.68)、(3.90 ±1.65)、(4.21±4.31)μg·m−3,分别占OC总量的27.2%、55.8%和19.5%,其中上海的SOC在OC中的占比最大,说明上海二次有机碳污染较为严重,这主要归因于冬季严重污染源排放和有利的二次转化气象条件,而天津和青岛的碳组分主要来自污染源的直接排放。主成分分析(PCA)结果发现,天津PM2.5中碳组分主要来源于道路尘、生物质燃烧和机动车尾气,上海PM2.5中碳组分主要来源于生物质燃烧、道路扬尘和机动车尾气。青岛PM2.5中碳组分主要来源于道路扬尘、机动车尾气。后向轨迹聚类分析表明,来自西北方向的气团对天津的影响较大,PM2.5和碳组分的浓度值最大;而对上海而言,主要受北方气溶胶经过海面又传输回上海的气团的影响;青岛站点主要受华北地区污染物和本地排放源的影响。
-
关键词:
- 典型城市 /
- PM2.5 /
- 碳组分 /
- 最小R2法(MRS法) /
- 来源分析
Abstract: To investigate the pollution characteristics and sources of carbonaceous species in PM2.5, samples were collected at three sites simultaneously from Dec.5, 2018 to Jan.30, 2019 in Tianjin (TJ), Shanghai(SH) and Qingdao(QD). The result showed that the average mass concentrations of PM2.5 were (116.96± 66.93), (31.21±25.62)μg·m−3 and (74.93 ±54.60 )μg·m−3. The spatial distribution of OC and EC shows the order of TJ (18.69 ±7.65)μg·m−3, (4.98 ±2.08 )μg·m−3) > QD (16.45 ±8.94)μg·m−3, (2.01 ±1.04) μg·m−3)> SH (7.28 ±3.11)μg·m−3, (1.05 ±1.25) μg·m−3). The good correlation between OC and EC indicated the similar OC and EC sources. The OC/EC ratios were 2.37—7.53, 5.47—46.41 and 4.77—13.36 at TJ, SH and QD, respectively, showing that SOC exists at all sampling sites. The SOC concentration was estimated by MRS (minimum r squared method). The average mass concentrations of SOC at three sampling sites were (5.09±4.68), (3.90±1.65) and (4.21±4.31) μg·m−3, accounting for 27.2%, 55.8% and 19.5% of the OC, respectively. Among them, the secondary carbonaceous pollution in SH is the most serious, and which is caused by severe pollution emissions and favorable meteorological conditions benefitting the secondary organic carbon formation, while carbon components in TJ and QD mainly comes from the primary emission. PCA analysis shows that the carbon components of PM2.5 at TJ are mainly from coal combustion, biomass combustion and motor vehicle exhaust, while at SH they are mainly from biomass combustion, road dust and motor vehicle exhaust. The carbon components at QD mainly come from road dust, motor vehicle exhaust and diesel vehicle exhaust. The backward trajectory analysis shows that the air mass from the northwest has a great influence on TJ, and the concentrations of PM2.5 and carbon components are the largest, while for the sties at SH and QD, the concentrations of carbon components and PM2.5 originating from the air mass in the middle of Hebei Province are the highest, indicating that the two cities are more affected by the transport of the surrounding areas.-
Key words:
- typical cities /
- PM2.5 /
- carbon component /
- minimum R2 squared method (MRS) /
- source analysis
-
表 1 采样点位情况
Table 1. Details for the sampling sites
城市
Cites编号
Code number点位名称
Sites经纬坐标
Latitude and longitude海拔高度/m
Altitude点位概况
Site description天津 TJ 天津大学卫津路校区 N39°6'59.6268",
E117°10'47.4744"8 校园内,周边污染较少 上海 SH 上海东滩鸟类国家级自然保护区 N31°30'53.58",
E121°58'16"2 周边居民少,污染源少 青岛 QD 青岛市环境保护局崂山分局 N36°06'23.23",
120°27'27.55"15 周边居民少,污染源少位 表 2 中国典型沿海城市冬季PM2.5 中OC、EC、Char-EC和Soot-EC浓度水平
Table 2. Mass concentrations of PM2.5,OC,EC,Char-EC and Soot-EC the average rations of OC/EC during winter in Chinese cities
城市
Cites采样时间
Sampling period平均浓度/(μg·m−3)
Mean concentration数据来源
Data sourcesPM2.5 OC EC Char-EC Soot-EC OC/EC 天津 2018年12月—2019年1月 116.96 18.69 4.98 3.77 9.41 4.03 本研究 上海 31.21 7.02 0.99 0.54 0.51 14.72 青岛 74.93 16.45 2.01 1.31 0.70 8.20 天津 2017年1月 153.3 23.5 7.8 3.0 [36] 2016-2-22—3-22 13.1 4.3 3.7 0.7 3.0 [37] 上海 2018年12月—2019年1月 31.2 8.4 1.0 0.40 0.5 8.4 [38] 2014年12月 67.5 9.9 3.1 3.2 [39] 2013年12月—2014年2月 55.5 17.2 2.9 5.9 [40] 青岛 2018年12月—2019年1月 74.9 16.5 2.0 1.3 0.7 8.3 [17] 2006年12月—2007年2月 110.0 22.1 3.0 7.1 [41] 2014年2月 134.0 20.5 2.2 9.3 [29] 表 3 碳组分主成分分析结果
Table 3. The result of principal component analysis
成分
components天津
Tianjin上海
Shanghai青岛
Qingdao因子1
Factor 1因子2
Factor 2因子3
Factor 3因子1
Factor 1因子2
Factor 2因子1
Factor 1因子2
Factor 1OC1 0.844 0.034 0.434 0.882 0.213 0.710 0.648 OC2 0.697 0.106 0.663 0.767 0.501 0.794 0.562 OC3 0.910 0.248 0.092 0.833 0.490 0.932 0.244 OC4 0.931 0.023 −0.230 0.930 0.291 0.969 0.089 EC1 0.217 0.920 −0.027 0.903 0.369 0.897 0.353 EC2 −0.035 0.135 0.944 0.664 0.700 0.368 0.815 EC3 0.121 −0.421 0.632 0.246 0.937 0.107 0.870 OPC 0.059 0.978 0.028 0.864 0.460 0.820 0.473 方差贡献率 37.0% 25.9% 24.8% 62.3% 29.2% 57.1% 32.1% 累积方差贡献率 37.0% 62.9% 87.7% 62.3% 91.5% 57.1% 89.2% 表 4 不同气团影响下PM2.5及其OC、EC质量浓度
Table 4. Comparative diagram of PM2.5 and carbon component concentration under the influence of different air masses
点位
Sites气团类型及占比
Type and proportion of air mass轨迹描述
Trajectory description浓度/(μg·m−3) OC EC PM2.5 天津 第1类(19.4%) 俄罗斯南部—蒙古共和国东部—呼和浩
特市—邯郸市和沧州市—北京—天津16.51 4.41 91.43 第2类(25.0%) 俄罗斯西南部—蒙古共和国西北部—内蒙古
中部—石家庄市和唐山市—北京—天津19.49 4.42 130.03 第3类(38.9%) 蒙古共和国西南部—内蒙古中部—
河北东北部—北京南部—天津26.23 6.91 176.95 第4类(16.7%) 河北省保定、沧州市—天津 15.68 4.87 87.36 上海 第1类(17.7%) 蒙古共和国东部—呼和浩特市—保定
和沧州市—北京、天津市—渤海湾—
威海和烟台市—黄海—上海5.90 1.26 34.41 第2类(29.4%) 蒙古共和国东部—呼伦贝尔和通辽市—
辽宁省朝阳市、葫芦岛市—渤海湾—
威海市—黄海—上海5.83 0.54 18.64 第3类(26.5%) 来自黄海 7.02 6.85 27.88 第4类(26.5%) 河北省衡水市—山东省烟
台和威海—黄海—上海9.93 1.40 48.43 青岛 第1类(29.4%) 蒙古共和国东部—呼和浩特市—沧州
市—渤海湾—烟台市—青岛市20.67 2.55 101.49 第2类(21.6%) 俄罗斯西部-蒙古共和国东南部—呼和浩特
市—沧州市—渤海湾—威海和烟台市—青岛市13.82 1.66 51.16 第3类(49.0%) 河北省衡水市—济南、淄博—青岛市 10.50 1.30 49.96 -
[1] 胡起超, 胡恭任, 于瑞莲, 等. 厦门市冬季大气PM2.5中有机碳和元素碳的污染特征 [J]. 地球与环境, 2016, 44(3): 336-341. HU Q C, HU G R, YU R L, et al. Pollution characteristics of organic carbon and elemental carbon in atmospheric PM2.5 in Xiamen in winter [J]. Earth and Environment, 2016, 44(3): 336-341(in Chinese).
[2] LI Q F, LING J, et al. Organic and elemental carbon in atmospheric fine particulate matter in an animal agriculture intensive area in North Carolina: Estimation of secondary organic carbon concentrations [J]. Open Journal of Air Pollution, 2013, 2(1): 7-18. doi: 10.4236/ojap.2013.21002 [3] HUANG L, BROOK J, ZHANG W, et al. Stable isotope measurements of carbon fractions (OC/EC) in airborne particulate: A new dimension for source characterization and apportionment [J]. Atmospheric Environment, 2006, 40(15): 2690-2705. doi: 10.1016/j.atmosenv.2005.11.062 [4] 关辽, 杨卓然, 马彤, 等. 成都市PM10中碳质气溶胶长期来源特点 [J]. 环境科学研究, 2018, 31(3): 435-441. GUAN L, YANG Z R, MA T, et al. Long-term source characteristics of carbonaceous aerosol in PM10 of Chengdu City, China [J]. Research of Environmental Sciences, 2018, 31(3): 435-441(in Chinese).
[5] MICHAEL S, JAN S, CLAUDIA C, et al. Comparative analysis of black carbon in soils [J]. Global Biogeochemical Cycles, 2001, 15(1): 163-167. doi: 10.1029/2000GB001284 [6] ZHANG Y L, LIU D, SHEN C D, et al. Development of a preparation system for the radiocarbon analysis of organic carbon in carbonaceous aerosols in China [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(17): 2831-2834. [7] YU S C, LI R L, DENNIS, et al. Primary and secondary organic aerosols over the United States: estimates on the basis of observed organic carbon (OC) and elemental carbon (EC), and air quality modeled primary OC/EC ratios [J]. Atmospheric Environment, 2004, 38(31): 5257-5268. doi: 10.1016/j.atmosenv.2004.02.064 [8] 郑玫, 闫才青, 李小滢, 等. 二次有机气溶胶估算方法研究进展 [J]. 中国环境科学, 2014, 34(3): 555-564. ZHENG M, YAN C Q, LI X F, et al. Advances in estimation methods of secondary organic aerosols [J]. China Environmental Science, 2014, 34(3): 555-564(in Chinese).
[9] LIN J C C. Particle size distribution of aerosol carbons in ambient air [J]. Environment International, 1997, 23(4): 475-488. doi: 10.1016/S0160-4120(97)00029-9 [10] PATHAK R K, WANG T, HO K F, et al. Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC) [J]. Atmospheric Environment, 2011, 45(2): 318-325. doi: 10.1016/j.atmosenv.2010.10.021 [11] LI Y C, YU J Z, HO S S H, et al. Chemical characteristics of PM2.5 and organic aerosol source analysis during cold front episodes in Hong Kong, China [J]. Atmospheric Research, 2012, 118(1): 41-51. [12] 刘兴瑞, 马嫣, 崔芬萍, 等. 南京北郊一次重污染事件期间PM2.5理化特性及其对大气消光的影响 [J]. 环境化学, 2016, 35(6): 1164-1171. doi: 10.7524/j.issn.0254-6108.2016.06.2015111004 LIU X R, MA Y, CUI F P, et al. Physicochemical characteristics of PM2.5 and impacts on light extinction during the heavy pollution period at North Suburban Nanjing [J]. Environmental Chemistry, 2016, 35(6): 1164-1171(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015111004
[13] WATSON J G, CHOW J C. Comparison and evaluation of in situ and filter carbon measurements at the Fresno Supersite [J]. Journal of Geophysical Research Atmospheres, 2002, 107(D21): 8341. [14] TAO J, ZHANG L M, LING G E, et al. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning [J]. Atmospheric Research, 2013, 122(1): 270-283. [15] 段凤魁, 贺克斌, 刘咸德, 等. 含碳气溶胶研究进展: 有机碳和元素碳 [J]. 环境工程学报, 2007, 1(8): 1-8. doi: 10.3969/j.issn.1673-9108.2007.08.001 DUAN F K, HE K B, LIU X D, et al. Research progress of carbonaceous aerosols: organic carbon and elemental carbon [J]. Journal of Environmental Engineering, 2007, 1(8): 1-8(in Chinese). doi: 10.3969/j.issn.1673-9108.2007.08.001
[16] 李立伟, 戴启立, 毕晓辉, 等. 杭州市冬季环境空气 PM2.5中碳组分污染特征及来源 [J]. 环境科学研究, 2017, 30(3): 340-348. LI L W, DAI Q L, BI X H, et al. Characteristics and sources of carbonaceous species in atmospheric PM2.5 during winter in Hangzhou City [J]. Research of Environmental Sciences, 2017, 30(3): 340-348(in Chinese).
[17] 徐少才, 王静, 吴建会, 等. 青岛市PM2.5化学组分特征及综合来源解析 [J]. 中国环境监测, 2018, 34(4): 44-53. XU S C, WANG J, WU J H, et al. Analysis of chemical composition characteristics and comprehensive sources of PM2.5 in Qingdao [J]. China Environmental Monitoring, 2018, 34(4): 44-53(in Chinese).
[18] 张懿华, 王东方, 赵倩彪, 等. 上海城区PM2.5中有机碳和元素碳变化特征及来源分析 [J]. 环境科学, 2014, 35(9): 3263-3270. ZHANG Y H, HENRY W, ZHAO Q B, et al. Analysis on the variation characteristics and sources of organic carbon and elemental carbon in PM2.5 in urban areas of Shanghai [J]. Environmental Science, 2014, 35(9): 3263-3270(in Chinese).
[19] RYOU H G, HEO J, KIM S Y. Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea [J]. Environmental Pollution, 2018, 240: 963-972. doi: 10.1016/j.envpol.2018.03.066 [20] PARK E H, HEO J, HIRAKURA S, et al. Characteristics of PM2.5 and its chemical constituents in Beijing, Seoul, and Nagasaki [J]. Air Quality Atmosphere & Health, 2018, 11(10): 1167-1178. [21] MORENO N, VIANA M, PANDOLFI M, et al. Determination of direct and fugitive PM emissions in a Mediterranean harbour by means of classic and novel tracer methods [J]. Journal of Environmental, Management, 2009, 91(1): 133-141. doi: 10.1016/j.jenvman.2009.07.009 [22] 史国良, 陈刚, 田瑛泽, 等. 天津大气PM2.5中碳组分特征和来源分析 [J]. 环境污染与防治, 2016, 38(1): 1-7. SHI G L, CHEN G, TIAN M Z, et al. Analysis on the characteristics and sources of carbon components in atmospheric PM2.5 in Tianjin [J]. Environmental Pollution and Prevention, 2016, 38(1): 1-7(in Chinese).
[23] 高雅琴, 王红丽, 景盛翱, 等. 上海夏季PM2.5中有机物的组分特征、空间分布和来源 [J]. 环境科学, 2018, 39(5): 1978-1986. GAO Y Q, WANG H L, JING S X et al. Chemical characterization, spatial distribution, and source of organic identification of organic matter in PM2.5 in summertime Shanghai, China [J]. Environmental Science, 2018, 39(5): 1978-1986(in Chinese).
[24] 惠洪宽, 王敏, 潘晓杰, 等. 青岛市大气颗粒物PM2.5污染特征动态分析 [J]. 科学与管理, 2018, 38(2): 74-81. HUI H K, WANG M, PAN X J, et al. Dynamic analysis of PM2.5 pollution characteristics of atmospheric particulates in Qingdao [J]. Science and Management, 2018, 38(2): 74-81(in Chinese).
[25] ZHAO P, DONG F, YANG Y, et al. Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China [J]. Atmospheric Environment, 2013, 71(3): 389-398. [26] TAN J H, DUAN J, MA Y, et al. Long-term trends of chemical characteristics and sources of fine particle in Foshan City, Pearl River Delta: 2008–2014 [J]. Science of the Total Environment, 2016, 565(15): 519-528. [27] XU J, WAND Q, DENG C, et al. Insights into the characteristics and sources of primary and secondary organic carbon: High time resolution observation in urban Shanghai [J]. Environmental Pollution, 2018, 233: 1177-1187. doi: 10.1016/j.envpol.2017.10.003 [28] 霍静, 李彭辉, 韩斌, 等. 天津秋冬季PM2.5碳组分化学特征与来源分析 [J]. 中国环境科学, 2011, 31(12): 1937-1942. HUO J, LI P H, HAN B, et al. Chemical characteristics and source analysis of carbon components of PM2.5 in autumn and winter in Tianjin [J]. China Environmental Science, 2011, 31(12): 1937-1942(in Chinese).
[29] 高素莲, 范国兰, 侯鲁健, 等. 山东省沿海和内陆城市PM2.5中碳组分污染特征[C]. 中国环境科学学会学术年会论文集, 2016 (第三卷). GAO S L, FAN G L, HOU L J, et al. Pollution characteristics of carbon components in PM2.5 in coastal and inland cities of Shandong Province [C]. Proceedings of the Annual meeting of the Chinese Society of Environmental Science 2016 (Volume 3) (in Chinese).
[30] 庞博, 吉东生, 刘子锐, 等. 大气细颗粒物中有机碳和元素碳监测方法对比 [J]. 环境科学, 2016, 37(4): 1230-1239. PANG B, JI D S, LIU Z R, et al. Comparison of monitoring methods of organic carbon and element carbon in atmospheric fine particles [J]. Environmental Science, 2016, 37(4): 1230-1239(in Chinese).
[31] 李礼, 翟崇治, 王军, 等. 重庆市主城区大气水溶性离子在线观测分析 [J]. 中国环境监测, 2017, 33(57): 22-27. LI L, ZHAI C Z, WANG J, et al. On-line observation and analysis of atmospheric water-soluble ions in the main urban area of Chongqing [J]. Environmental Monitoring in China, 2017, 33(57): 22-27(in Chinese).
[32] KHAN B, HAYS M D, JETTER C G, et al. Differences in the OC/EC ratios that characterize ambient and source aerosols due to thermal-optical analysis [J]. Aerosol Ence & Technology, 2012, 46(2): 127-137. [33] CHOW J C, WASTON J G, PRITCHETT L C, et al. The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in U. S. Air quality studies [J]. Atmospheric Environment Part A General Topics, 1993, 27(8): 1185-1201. doi: 10.1016/0960-1686(93)90245-T [34] HAN Y, CAO J, CHOW J C, et al. Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC [J]. Chemosphere, 2007, 69(4): 569-574. doi: 10.1016/j.chemosphere.2007.03.024 [35] 沙丹丹, 王红磊, 朱彬, 等. 冬季PM2.5中含碳气溶胶的污染特征——长江三角洲地区一次区域重污染过程分析 [J]. 中国环境科学, 2017, 37(10): 3611-3622. doi: 10.3969/j.issn.1000-6923.2017.10.002 SHA D D, WANG H L, ZHU B, et al. Pollution characteristics of carbonaceous aerosols in PM2.5 in winter—Analysis of a regional heavy pollution process in the Yangtze River Delta [J]. China Environmental Science, 2017, 37(10): 3611-3622(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.10.002
[36] 元洁, 刘保双, 程渊, 等. 2017年1月天津市区PM2.5化学组分特征及高时间分辨率来源解析研究 [J]. 环境科学学报, 2018, 38(3): 1090-1101. YUAN J, LIU B S, CHENG Y, et al. Study on characteristics of PM2.5 and chemical components and source apportionment of high temporal resolution in January 2017 in Tianjin urban area [J]. Acta Scientiae Circumstantiae, 2018, 38(3): 1090-1101(in Chinese).
[37] 程渊, 刘保双, 毕晓辉, 等. 天津市区夏冬季环境空气PM2.5中碳组分污染特征及来源研究 [J]. 环境科学学报, 2018, 38(9): 3394-3405. CHENG Y, LIU B S, BI X H, et al. Character and source analysis of carbonaceous aerosol in PM2.5 during summer-winter period, Tianjin urban area [J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3394-3405(in Chinese).
[38] 周敏. 上海大气PM2.5来源解析对比: 基于在线数据运用3种受体模型[J]. 环境科学, 2020, 40(5): 1978-1986. ZHOU M. Source analysis and comparison of atmospheric PM2.5 in Shanghai: Three receptor models were used based on online data [J]. Environmental Science , 40(5): 1978-1986(in Chinese).
[39] 刘子贺, 常运华, 鲍孟盈, 等. 上海重霾期PM2.5碳质组分污染特征及来源分析 [J]. 科学技术与工程, 2019, 19(11): 333-343. LIU Z H, CANG Y H, BAO M Y, et al. Analysis on pollution characteristics and sources of carbonaceous components of PM2.5 in Shanghai during heavy season [J]. Science, Technology and Engineering, 2019, 19(11): 333-343(in Chinese).
[40] MING L, JIN L, LI J, et al. PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events [J]. Environmental Pollution, 2017, 223: 200-212. doi: 10.1016/j.envpol.2017.01.013 [41] WU R D, ZHOU X H, WANG L P, et al. PM2.5 Characteristics in Qingdao and across coastal cities in China [J]. Atmosphere, 2017, 8(4): 77. [42] SCHAUER J J, MICHAEL J K, GLEN R C, et al. Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles. [J]. Environmental ence & Technology, 2002, 35(9): 1716-28. [43] CHEN Y, ZHI G, FENG Y, et al. Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China [J]. Geophysical Research Letters, 2006, 33(20): 382-385. [44] SCHAUER J J, KLEEMAN M J, CASS G R, et al. Measurement of emissions from air pollution sources. 3. C-1-C-29 organic compounds from fireplace combustion of wood [J]. Environ, Technol, 2001, 2001,35(9): 1716-1728. [45] HE L Y, HU M, HUANG X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking [J]. Atmospheric Environment, 2004, 38(38): 6557-6564. doi: 10.1016/j.atmosenv.2004.08.034 [46] CHOW J C, WATSON J G, LU Z Q, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during Sjvaqs/Auspex [J]. Atmospheric Environment, 1996, 30(12): 2079-2112. doi: 10.1016/1352-2310(95)00402-5 [47] CHENG W, ZHEN T J. Determination of primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method [J]. Atmospheric Chemistry & Physics, 2016, 16(8): 1-25. [48] JI, D GAO S M, WILLY M, et al. The carbonaceous aerosol levels still remain a challenge in the Beijing-Tianjin-Hebei region of China: Insights from continuous high temporal resolution measurements in multiple cities. [J]. Environment International, 2019, 126: 171-183. doi: 10.1016/j.envint.2019.02.034 [49] TURPIN B J, CARY R A, HUNTZICKER J J. An in situ, time-resolved analyzer for aerosol organic and elemental carbon [J]. Aerosol Science and Technology, 1990, 12(1): 161-171. doi: 10.1080/02786829008959336 [50] CAO J J, LEE S C, CHOW J C, et al. Spatial and seasonal distributions of carbonaceous aerosols over China [J]. Journal of Geophysical Research Atmospheres, 2007, 112(D22): D22S11. [51] LI W F, BAI Z P. Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin, China [J]. Particuology, 2009, 7(6): 432-437. doi: 10.1016/j.partic.2009.06.010 [52] XU H M, CAO J J, CHOW J C, et al. Inter-annual variability of wintertime PM2.5 chemical composition in Xi'an, China: Evidences of changing source emissions [J]. Science of the Total Environment, 2016, 545: 546-555. [53] HOW J C, WATSON J G, KUHNS H, et al. Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study [J]. Chemosphere, 2004, 54(2): 185-208. doi: 10.1016/j.chemosphere.2003.07.004 [54] KIM E, HOPKEB P K, EDGERTONC E S. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization [J]. Atmospheric Environment, 2004, 38(20): 3349-3362. doi: 10.1016/j.atmosenv.2004.03.012 [55] WATSON J G, CHOW J C, LOWENTHAL D H, et al. Differences in the carbon composition of source profiles for diesel-and gasoline powered vehicles [J]. Atmospheric Environment, 1994, 28(15): 2493-2505. doi: 10.1016/1352-2310(94)90400-6